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ARTICLES

Beholding a Rotating Beacon

IRL BIVENS

Davidson College
Davidson, NC 28036-1719

ANDREW SIMOSON
King College
Bristol, TN 37620

1. Introduction

Imagine a powerful beacon positioned on an island, its beam illuminating the (convex)
shoreline of a lake as it rotates counterclockwise with constant angular velocity w. Is
there any place on the lake where an observer could sit in a rowboat so that the
illuminated spot on the beach always appears to move about the shoreline in a
counterclockwise direction? The reader might be inclined to think that nothing to the
contrary could occur, that any place on the lake would be equally satisfactory.
However, if o is large enough, and if we take into account the finite speed of light,
then some unexpected behavior results.

One purpose of this paper is to characterize the set of “ordinary” vantage points,
from which the beacon’s light show is always counterclockwise. We prove that at
moderate rotation rates the set of ordinary points is a proper, open, convex subset
of the region bounded by the shoreline. Furthermore, in all cases save one, the set of
ordinary points will be empty at high rotation rates. The single exception is the case of
an elliptical shoreline with the beacon at one focus. In this case the set of ordinary
points always contains the second focus of the ellipse. As the rotation rate of the
beacon increases, the set of ordinary points shrinks to the second focus at a rate which
(to first order) is inversely proportional to the rotation rate of the beacon.

An investigation into the structure of the set of ordinary points leads us into
mathematics that is interesting in its own right. For example, in order to study the
“shape” of the set of ordinary points we construct an explicit parametrization for the
envelope of a family of lines that make specified angles with some fixed curve. This
parametrization should be of general interest apart from its specific application in our
paper. (In a number of cases it is much easier to use our parametrization than to carry
out the classical envelope procedure.) Another result of some general interest is our
“elliptical” generalization of unit normalization: given an ellipse, pick a focus and
scale each point on the ellipse “away” from that focus by the reciprocal of its distance
to the second focus. In the case of a circle the result is of course simply a concentric
unit circle. More generally, in the case of an ellipse the result is always a second
ellipse whose congruence class depends only upon the similarity class of the original
ellipse.

Our most surprising result (Theorem 6) has to do with the shape of the ordinary set
at high rotation rates in the case of an elliptical shoreline with the beacon at one focus.
We prove that this shape is described by a (classical) curve known as an antiortho-
tomic of an ellipse. (See Ficure 14 for an example of an antiorthotomic.) However, the
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ellipse in question is not our shoreline, but its “elliptical” normalization. The manner
in which the kinematics of the rotating beacon and these other seemingly unrelated
elements come together is, to us, most pleasing.

But first, let’s review the problem as stated in the related rates section of the typical
calculus text: “A beacon rotating counterclockwise at w radians per second is one mile
from shore. How quickly does the illuminated spot on the shoreline move along the
beach?” Assume the beacon is located at a point Q. Since the assumption in this
problem is that the beach is a straight line, let x be a coordinate along the beach such
that the point R on the beach closest to the beacon corresponds to x=0. (See
Ficure 1.) Let 6 denote the angle between the direction of the beacon and ray QR at
time ¢. The (usually unstated) assumption that the speed of light is infinite implies
that at any given time there will be a (unique) spot of light on the beach if and only if
the beacon is pointing towards the shoreline at that moment. In this case, x = tan 6
and by the chain rule

dx  dx do 2 2
T a0 = @sec 0=o(l+x7). (1)

Note that according to this solution the position x of the spot is a strictly increasing
function of ¢ and its velocity ({IT; becomes infinite as |x| approaches infinity. Likewise,
the velocity of the spot becomes infinite as w approaches infinity.

P
X
6 = arctan x
R
Q 1
FIGURE 1

The beacon, Q, and illuminated spot P.

One problem with this solution is that it ignores the fact the speed of light ¢ is
actually finite. Of course, for all practical terrestrial problems this objection is rather
academic. Nonetheless, we can still ask for the correct model under the assumption of
finite light speed. To compute the velocity of the spot under this assumption, we must
differentiate position x with respect to the time ¢ at which the light from the beacon
actually arrives at x. It follows from the analysis in [1] that, in this case,

dx co(l+x?)

S ot Sl MV S 2
d c+ wxVl +«2 ( )

2w
so the velocity of the spot is undefined at x,. (For example, if the beacon is rotating at

A little algebra reveals that the denominator of (2) vanishes at x, = —

>
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one revolution per minute, then x, = — 1333 miles.) Geometrically, x, is the point at
which the spiral wavefront of light from the beacon initially “splashes” onto the
beach. (See Ficure 2.) The velocity of the spot is negative for x <x, and is positive for
x >x,. Thus, contrary to the infinite light speed solution, the spot on the shoreline is
actually moving in the negative x direction for x <x;. (A similar phenomenon
sometimes appears in old war movies: a machine gunner swings his machine gun in an
arc from a position parallel to a building toward the building while firing the gun;
however, the bullet holes strike the wall in the reverse direction, with the track of
bullet holes traveling away from the gun. A safer demonstration of this phenomenon
can be performed with a rotating lawn sprinkler.)

N\

0

X

FIGURE 2
A wave rolls onto the beach.

If we allow ¢ to approach infinity in equation (2) then we recover the infinite light
speed solution of equation (1). Furthermore, note that as |x| approaches infinity the
speed of the spot does not become infinite but instead approaches c¢. On the other
hand, near the point x, the speed of the spot does become arbitrarily large. (See [3]
for further discussions of such phenomena.) As w approaches infinity the initial

contact point x, approaches 0 and the velocity of the spot at x # 0 approaches ALE

Although this limiting velocity has magnitude greater than c, it is still finite. If we
assume the beacon has been rotating for all time, then at any given moment there will
be infinitely many spots moving along the shoreline in both directions. Note that these
conclusions are in dramatic opposition to those of the infinite light speed model.

As is suggested in [1], let us now imagine that the “beach” is actually a smooth
convex closed curve. In fact, to “reflect” the function of the beach more accurately,
we will henceforth refer to it as a “screen.” We will choose a coordinate system such
that the beacon is at the origin and the screen is described by a polar graph
r=£(6) > 0. To simplify our formulas we will choose our units such that the speed of
light ¢ is equal to 1. Assume that at time ¢ =0 the beacon points in the direction
6=0. The time at which light illuminates the spot at r=jf(8) is given by

t=1t(0)= % +£(6). By the familiar arclength formula, (% =VIAOT +[F (T,

where s =5(8) is the distance measured counterclockwise along the screen from the
point = f(0) to the point r =f(8). (This notation and these assumptions will remain

in effect throughout the remainder of this paper.) Then, % = 1; +£'(6) so that on

intervals of 6 for which f'(6)# — %, we can express 6 as a smooth function of ¢
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. . .. . . do _ &)
with implicit derivative T =TT ar )

spot on the screen at point r = f(8) is given by

ds _ds do _ oV LA(O1+[f(O)
A S P O (3)

Using the chain rule, the velocity v(6) of the

do
dt
counterclockwise around the screen when v(6) >0 and is moving clockwise when

v(6) <0. As in the case of a straight beach, there may be more than one spot on the
screen at a time. To better understand this phenomenon, consider first Ficure 3,
where the beacon is rotating at a slow rate. At any time, only one spot on the screen is
illuminated, and the “light show” on the screen is always moving counterclockwise.
However, Ficure 4 illustrates that as the rotation rate increases, a qualitative change in

Since the sign of v(6) is equal to that of we see that the spot is moving

(DG
(DI
(OO0

9
9
9

FIGURE 3
Slower rotation.

Clee6
(OO
GIOG®

(o

FIGURE 4
Faster rotation.
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the behavior of the spot takes place. Up to around ¢ = 3 there is a single spot on the
screen. Then, at about ¢ =3, a “splash” occurs and three points on the screen are
illuminated; two of these move counterclockwise and the other moves clockwise.
Shortly after ¢ =6, two of these spots collide (at infinite speed) in a “crash” and
disappear at one end of the screen while the third continues moving counterclockwise
at the other end.

As the rotation rate is increased, more and more points along the screen will be
illuminated concurrently, so that as w — % the entire screen becomes ablaze with
light continually moving in both directions. Even more complications can arise. For
example, if f'(8) = — % on some interval then light from the beacon arrives at all the
corresponding points = () simultaneously. (Geometrically, this means that a
portion of the screen actually coincides with the wavefront of the beacon.) In this
case, it becomes difficult even to define the “position” of the spot on the screen.
Such a light show is in a stark contrast to what one might “naively” expect; namely, a
single spot of light moving counterclockwise around the screen. However, with this
naive expectation in mind, we define a vantage point within the region bounded by
the screen to be ordinary for a particular rotation rate, if the view of the screen from
that point shows a single spot of light moving with finite speed counterclockwise
around the screen. A vantage point that is not ordinary will be called extraordinary.

Given the possible complexity of the light show on the screen, the determination of
the set of ordinary points might appear to be a difficult problem. However, as we will
see in the next section, its solution becomes relatively straightforward if we ignore
what is actually occurring, and focus instead upon what appears to be happening.

2. Ordinary vantage points and separation lines

In assigning space and time coordinates to physical events it is important to distin-
guish between observing an event and seeing the event occur. In effect, an “observer”
is assumed to be omniscient and omnipresent, knowing at every “instant” what is
going on anywhere within the observer’s frame of reference. On the other hand, for
someone to “see” an event occur, light must travel from the location of the event to
the eyes of the person viewing it. Because of this optical backlog, what is actually
happening and what appears to be occurring can be quite different. Henceforth, when
we use the words “see,” “view,” and “appears” we will mean “seeing,” not
“observing.”

Our first goal is to separate the ordinary from the extraordinary points. Let
g(68) = (f(8)cos 0, f(8)sin ) denote a parametrization of the screen in terms of 6

and let T =T(0) = £ denote the unit tangent vector field to g. Let p=1/w

g’ (ol
denote the reciprocal of the rotation rate @ and note that the expression Ptf(6)

. llg' (o)l
£ ":f (5) = is always greater than —1. For all values of 6 such that
VIO + [ ()]

-1< ”"Jr,{o(f“) <1, define «,(6) = alccos(p ]E;ﬁl)) Then, for each value of 6 such

that ap(O) is defined, let L(6) denote the hne obtained by rotating the tangent line to
the screen at g(6#) counterclockwise through an angle of ap(O). We will refer to the
lines L(6) as separation lines.

The next result shows that a separation line does, in fact, separate ordinary points
from extraordinary points.
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THEOREM 1. Let Q denote any fixed point within the region bounded by the screen
and assume the beacon is rotating at some fixed rotation rate ®.

(a) The point Q is ordinary if and only if for each separation line L(0), Q lies on the
side of L(8) opposite the direction of the screen at g(6). (That is, Q and the point
g(0) + T(6) lie on opposite sides of L(0).)

(b) The point Q is extraordinary if and only if there exists a separation line contain-

ing Q.
Proof. (a) If Q = (x, y), let hp(8) = \/(f(@)cos 6—3)"+ (f(8)sin6—y)° de-

note the distance from Q to the point g(8) on the screen. Light will leave the beacon

heading towards g(6) at time 6/w= 6p, will reflect from point g(6) at time

Op + f(6), and will arrive at point Q at time ¢ =1,(6) = p + f(6) + hy(6). If Q is

an ordinary vantage point then #,(6) must be a strictly increasing function og 6.
as

Therefore, ¢,(8) > 0. Because the spot appears to have finite speed at all times, = is
Q dt

always defined and finite. It follows from the chain rule that

G0 = 5 5= = VUOT+ O =le()]=0.

since the screen is assumed to be a regular curve. Consequently, if Q is ordinary then
t5(6) > 0 for all values of 6. Since this reasoning can be reversed when t’Q(B) >0, it
follows that Q is ordinary if and only if

to(0) =p+f'(6)+H,(6)>0. (4)
Let ¢,(6) denote the angle between T(6) and the displacement vector from g(6)
to Q. A little vector calculus shows that h,(6) = —llg'(8)llcos $,(68) and inequality

(4) then becomes
to(8) =p+f(0)+Hy(8)=p+f(0) =g (6)lcos pp(6)>0.

Equivalently, Q is ordinary if and only if, for all 6,

p+f(6)
0) < —1———~. 5
cos d’Q( ) ”g/(o)” ( )
This inequality is automatically satisfied if P“;,{;)GH) > 1, since Q lies in the region
bounded by the screen. If —1 <2 £SO <1 then this inequality is satisfied if and

llg’' (el
only if «,(8) < (;’)Q(O), since the cosine is a decreasing function on the range of the
arccosine. Geometrically this means that Q is ordinary if and only if for each
separation line L(6), Q lies on the side of L(6) opposite the direction of the screen

at g(0).

(b) Tt follows from inequality (4) that Q is extraordinary if and only if #,(6) < 0 for
some value of 6. Since tQ(O) > pb, t’Q(O) cannot be negative for all values of 6.
Because #;,(6) is a continuous function of 6, Q is thus extraordinary if and only if the
equation t,(6) =p+f'(8) —[g'(8)llcos $(8) =0 has a solution 6. This equation

may be written in the form cos $o(8) = ‘le;’(r;(f”). Since —1 < cos ¢,(68) <1, this

equation has a solution if and only if @, (6) = ¢,(6) for some value of 6. Geometri-

cally, this means that Q is extraordinary if and only if Q lies on some separation line
L(6).
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It follows from equation (3) that when the spot has a well-defined position and

speed on the screen, the velocity of the spot is given by v(8) = ,Jl—lir)(,,o—();l). If v(6)>0

then a point Q is ordinary if and only if v(6)cos ¢,(8) < 1. The reader can show that
this condition is a consequence of the Doppler shift phenomenon.

Theorem 1 can be used in a couple of ways to display the set of ordinary points. For
example, we can sample points in the region bounded by the screen and plot those for
which inequality (4) is violated. The unshaded portion of the region will then

approximate the set of ordinary points. Ficure 5 depicts these approximations, at

1
2+ cos
representative sample of separation lines. The set of points within the region belong-
ing to no separation line is then the ordinary set. Ficure 6 illustrates this procedure for
the ellipse and rotation rates of Ficure 5.

various rotation rates, for the ellipse r = 5 A more efficient method is to plot a

FIGURE 5
The vanishing ellipse.

FIGURE 6
The vanishing ellipse (separation lines version).
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An immediate consequence of Theorem 1 gives us some information about the
structure of the ordinary set.

COROLLARY 2. For every rotation rate the set of ordinary points is an open, convex
subset of the region bounded by the screen.

Proof. 1t follows from Theorem 1 (a) that the ordinary set may be obtained as the
intersection of the convex region bounded by the screen with open half-planes
bounded by separation lines. Since the intersection of convex sets is convex, the set of
ordinary points must be convex.

Define the function = £(6) to be @,(6) when ,(6) is defined and to be 0
otherwise. It is easy to see that B is a continuous function on [0,27]. Let M(6)
denote the line obtained by rotating the tangent to the screen at g(8) by angle p(6)
counterclockwise. As 6 varies from 0 to 27 the set of points on M(8) whose distance
to g(6) is no more than the diameter of the screen sweeps out a compact (and thus
closed) subset of the plane that contains all extraordinary points and no ordinary
points. The intersection of the (open) complement of this set with the region bounded
by the screen is the set of ordinary points. Therefore, the set of ordinary points is
open.

Using inequality (4) it is easily shown that a decrease in the rotation rate of the
beacon can never result in an ordinary point becoming extraordinary, nor can an
increase in the rotation rate cause an extraordinary point to become ordinary.
Furthermore, Ficures 5 and 6 suggest that at low rotation rates most vantage points
will be ordinary, while at high rotation rates the view becomes extraordinary. The next
result gives further details on the relationship between rotation rates and the ordinary
set.

PROPOSITION 3. (a) The only screens that have vantage points that are ordinary for
every rotation rate are ellipses, with the beacon positioned at one focus. For such a
configuration, the only always-ordinary vantage point is the other focus. In every
other case, for every vantage point Q, there is a critical rotation rate w, such that Q
is ordinary for rotation rates less than wy, and extraordinary otherwise..

(b) For every screen and for every position of the beacon, there exists a rotation
rate w, such that the set of ordinary points is the entire region bounded by the screen
precisely for those rotation rates no greater than .

(¢) For every nonelliptical screen or for every elliptical screen for which the beacon
is not located at a focus, there exists a rotation rate w, such that the set of ordinary
points is the empty set precisely for those rotation rates no less than .

Proof. We assume the notation used in the proof of Theorem 1.

(a) Let Q denote some fixed point within the region bounded by a particular
screen. We first argue that if the function H(6)=f(8) + h,(6) is not identically
constant then there exists a rotation rate w, such that Q is ordinary for rotation rates
less than Wo» and extraordinary otherwise. If H is not constant then its periodicity
implies that the minimum value of H’'(#) is some negative number m. Define
@y =1/Iml. Then t,(8) = p+ H'(8) = 1/w+ H'(8) is positive precisely for rotation
rates @ < w,. In other words, it follows from condition (4) that Q is ordinary if
o < w, and extraordinary otherwise. On the other hand, the function H is identically
constant if and only if the screen is an ellipse with foci the beacon and Q.
Furthermore, in this case tb(@) = p is a positive constant and we see that the focus Q
is ordinary for every rotation rate.
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(b) The set of ordinary points is equal to the region bounded by the screen if and

only if there are no separation lines. This occurs if and only if £ +](f9()0”) > 1 for all 6.

Equivalently, p > [/g'()ll —f'(6) for all 6. But this inequality is satisfied if and only if
p is equal to or greater than the maximum value of [[g'(6)||—f'(6), for 6 in [0,27].
Equivalently, the rotation rate of the beacon must be less than or equal to the
reciprocal @, of this maximum value in order for every point to be ordinary.

(c) Assume that the screen is either not an ellipse or is an ellips for which the
beacon is not located at a focus. First we argue that there exists a rotation rate for
which the set of ordinary points is empty. By choosing w large enough, we can ensure
that a separation line is defined for each value of 6. Then, for each separation line
L(0), we let H(6) denote the closed half-space of points either on L(6) or on the
opposite side of L(6) from the direction of the screen at g(8). The intersection of
the compact set bounded by the screen and all closed half-spaces H(6) is then a
compact subset F that contains the set of ordinary points corresponding to rotation
rate w. If F is empty then no points are ordinary for rotation rate w and we are done.
Suppose then that F is not empty. Since the screen is a smooth curve, it is
straightforward to show that F is contained in the interior of the region bounded by
the screen. For any point Q in F, if the beacon has rotation rate w, then Q is
extraordinary and must lie on some separation line L(6). Equivalently, for some value
of 9, ap(O) = d)Q(G). It follows that if we increase the rotation rate to wg + 1 then Q
will belong to the open half-space U, of points on the same side of L(8) as
the direction of the screen at g(6). If Q is allowed to vary over all points in
F, the collection of open sets {UQ} will cover F. Since F is compact, some finite sub-
collection {UQ , UQ ). U } of these open sets will also cover F. The maximum of
{w, wg, + 1, wg, T 1,. wQ + 1} will then be a rotation rate for which the set of
01d1na1y points is empty

For any Q in the region bounded by the screen, w, will be a lower bound for the
collection of rotation rates with empty set of ordinary points. Let w, denote the
greatest lower bound for this set. Then for all points Q, w, < w,, so that for any
rotation rate equal to or greater than w,, the set of ordinary points is empty. On the
other hand, by definition of the greatest lower bound, the set of ordinary points must
be nonempty for any rotation rate less than w;.

Example 1. Consider the case of a circular screen of radius 1 with the beacon at
the center. Then it follows from Corollary 2 and Proposition 3 (a) that for any rotation
rate the set of ordinary points will be a nonempty open convex set containing the
beacon. Symmetry then implies the ordinary set will be an open disk concentric with
the screen. Since r=f(6) =1, f'() = 0 and |lg’(8)ll = 1, it follows from the proof of
Proposition 3 (b) that w, = 1. Therefore, if w <1 the ordinary set is then the entire
unit disk. If @>1 then simple geometry (see Ficure 7) shows that the distance of
each separation line to the beacon is p =1/w. Consequently, in this case the ordinary
set is an open disk of radius p centered at the beacon.

Ficure 8 illustrates Proposition 3 (c) in the case of a convex limagon =2 + cos(6).

3. Enveloping the set of ordinary points

We have seen that the set of ordinary points is always an open convex subset of the
region bounded by the screen. In order to describe the shape of this set more
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0
-
,(6)
P 1
6
> 2(9)
o

,(8) = arccos( p)

FIGURE 7
A circular screen.

FIGURE 8
An empty set of normal points.

precisely, we need to determine the boundary of the ordinary region. In general the
boundary of a convex region in the plane will be a continuous curve that is
differentiable almost everywhere. Any point S within the region bounded by the
screen that is on the boundary of the set of ordinary points must be extraordinary and
thus must lie on some separation line L. Since points on the “extraordinary” side of L
will be isolated from the ordinary set, if the boundary of the ordinary set has a tangent
line at S, then this tangent line must be L. Consequently, within the region bounded
by the screen the boundary of the ordinary set will be almost everywhere tangent to
the collection of separation lines. This suggests that the boundary of the ordinary set
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will either be on the screen itself or will be part of the envelope of the family of
separation lines. While Ficure 6 seems to lend credence to this conclusion, a careful
proof turns out to be rather delicate.

We will sketch a proof of this result after first constructing an explicit parametriza-
tion of an envelope for a one-parameter family of lines % whose angles with some
specified curve g are known. Let g = g(s) denote a unit-speed curve with Frenet
frame T =T(s) and N = N(s), where N is obtained from T by a counterclockwise
rotation of 90 degrees. Assume that through each point g(s) there is a line M(s)
parallel to Wi(s) = cos a(s)T(s) + sin a(s)N(s), where a = a(s) is a smooth function
of s. Let #={M(s)} denote the resulting one-parameter family of lines. Let W, =
—sin aT + cos aN denote the rotation of W, 90 degrees counterclockwise and
observe that W] = (k + a’)W, and W, = —(k + a’)W,, where k = k(s) is the curva-
ture of g. Also note that T = cos a W, — sin a W,. By an envelope for & we will mean
a smooth curve P = P(s), parametrized by the arclength of g, such that at any regular
point P(s) the tangent line to P is M(s). Then, P may be written in the form
P(s) = g(s) + Q(s)W,(s), for some smooth function Q(s) such that P'(s) is always a
multiple of W (s). Since

P'(s) =T+ Q'(s)Wi(s) + (x(s) +a'(5)) Q(s)Wa(s)
= (Q'(s) +cos a(s))Wi(s) + [(k(5) + &'(5)) Q(s) = sinar(s)[Wy(s),

we must have

(k(s) +a'(s))Q(s) —sina(s)=0. (6)
On intervals for which k(s) + a'(s) #0 we can solve equation (6) for Q, getting

Q(s) = K—(%;Tai—i%s—)—, and our envelope takes the form

sin a(s)

P(s) =g(s) + QIW(5). Q) = 17T sy @)

Conversely, if k(s) + a'(s) # 0 and P is defined by (7) then P is an envelope for .
(The existence of an envelope for # when k(s)+ a'(s) =0 is a much more subtle
question whose investigation would take us too far afield.)

A few examples will illustrate the usefulness of parametrization (7).

Example 2. Recall that the general solution y =mx + f(m) to Clairaut’s differen-
tial equation, y = xy’ + f(y') may be interpreted as a one-parameter family of lines in
which the parameter is the slope of each line. The singular solution of Clairaut’s
equation is the envelope of this family of lines and can be parametrized by the pair of
equations x = —f'(¢) and y = —¢f'(t) + f(¢). On the other hand, we could consider a
one-parameter family # of lines y =f(b)x+b in which the parameter is the
y-intercept of each line. The corresponding variant of Clairaut’s equation is then

given by
y' =f(y—xy'). (8)

Using the parametrization (7) we can obtain the envelope of . In this case the curve
g(s)=(0, s) has curvature identically 0, T =j,N = —i. We assume without loss of
generality that our spanning vector W, always has negative i component. Then our
angle function a(s) satisfies the equations sin a= ! cos @ = — \/f_f) ,
1+f2

and cot a(s) = —f(s). Since a' = f ~and k+a' =a' = ' we will restrict

1+f2 141
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1+ 2
attention to intervals over which f'(s) # 0. Then Q = 7 and W, =

f

. Substitution into our expression (7) for P(s) yields P(s) =

1 . f .
- +
(\/1+f21 \/1+f2J)

(— 7%5, s— %,-(%) It can be checked directly that the equations x = — ﬁ and
y=s-— ){_’((% parametrize a singular solution to (8). (The reader is invited to solve (8)

in the manner of Clairaut’s equation by making the change of variables s =y —xy'.)

Example 3. Fix a pair of positive integers ¢ < p and take g(s) = (cos s, sin s) to be
the unit-circular immersion of the s-axis into the plane. Define & to be the family of
chords between g(s) and g(%). Ficure 9 displays & for (p,q)=1(2,1) and
(p,q) =(9,4). The central angle of each chord has measure 22 —s = Lp__;_q)s from
which it immediately follows that the angle a(s) between the chord and the unit
tangent T at g(s) has measure a(s)= %s Since the unit tangent T makes an
angle of s + /2 with the horizontal, our spanning vector W,(s) makes an angle of

s+ /2 + %:T(L)S =m/2+ %J—:I—(Qs with the horizontal. Therefore,
W,(s) = cos (77/2 + %s)i + sin (77/2 + (_732';_‘7)8)}

= i (D i on (2D .

Since a'(s) = w and k=1, we compute that

]
. p—q . p—q
sm( 5 s) 2qsm( 5 s)

Q0(s) = 1+ 0T g

Equation (7) for the envelope then becomes (after using the identities sin A sin B =
2cos(A — B) — tcos(A + B) and sin Acos B = 1sin(A + B) + +sin(A — B))

pcoss-%—qcos(i—;s) psins+qsin(§s)
ptq ’ ptq

P(s) =g(s) + Q(s)Wi(s) = (

W

o
U

g
’.

O
N
.=

" (p.9)=(@2.1) : (7).q)=(9,4)

FIGURE 9
Families of chords in a circle.
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Since P'(s) = (Q'(s) + cos a(s)) W(s), to find the cusps of this envelope we must
find the solutions to

Q'(s) tcosa(s)= zIZcos a(s) +cosa(s)= pzfq cos a(s) =0.

It follows that cusps occur for s = @n = Vg _ @n - l)f’ Tn=1,..., p'—q', where p’
P—q P —q

and ¢’ are the quotients of p and ¢ by the g.c.d. of p and g. This fact has an
interesting interpretation in terms of a spirograph [4].

A
1+ecos @
focus F, and right focus the origin F,, oriented counterclockwise. Let s denote

arclength along g and express 6 as the function 6= 6(s). Define F to be the
one-parameter family of lines through F, and g(6) = (f(8)cos 6, f(8)sin 6)
parametrized by s. A spanning vector field W(s) for & is obtained by rotating the
oriented unit tangent T to g at g(#) counterclockwise through an angle a= a(s)
f(8)

VI(8) +f(6)’
form F; = P(s) = g(6) + Q(s)W,(s) where Q(s) is the distance from g(8) to F,. It is
clear that P is an everywhere singular envelope of & and it then follows from
equation (6) that (i) (k(s) + a'(s))Q — sin a(s) = 0 for all values of s. Since sin a(s) =
SO #0, () implies k(s)+ a'(s) #0. (We will need this result later.)
VF(0) +f(6)*

Because 0= P'(s) = (Q'(s) + cos a(s)W,(s) it follows that (i) Q'(s)+ cos a(s) =
Q'(s)+ S0 — 0 Both (i) and (i) correspond to geometrical properties of

VF (@) +f(6)
an ellipse, the second well-known and the first less-known. Since Q(s) is the distance

Example 4. Suppose g is the ellipse r=f(0) = of eccentricity e, with left

such that cos a(s) = . The point curve P(s)=F, may be written in the

from g(s) to F, and Q'(s) = ) N— equation (ii) is equivalent to the defining
VF (0 +f(6)’
property that the sum of the distances from any point on the ellipse to the two foci is a
constant. Equation (i) also has an interesting geometrical interpretation. Let 8= B(s)
denote the angle T makes with the horizontal and let y(8) denote the angle that the
ray from F, through the point r = f(#) makes with the horizontal (i.e., y is the angle
of elevation of points on the ellipse with respect to the left-hand focus F,). Then, in
terms of the notation above, a+ B=y+ 7. Differentiating both sides of this
equation with respect to s and using equation (i) together with the fact that

k(s)=p'(s) yields y'(s) = sa(s) - Gince sinals)= —FE  and y'(s) =
ee) Vi) +10y

—@—T we have y'(9) = —6 In other words, the rate at which y is changing

VF(8) +f(6)°

with respect to 6 is equal to the ratio of the distances to the two foci of the
corresponding point on the ellipse.

We now return to the family of separation lines associated to our rotating beacon
problem. Since @, is a smooth function defined on open 6 intervals, we may use (7)
to parametrize the envelope of this family.

Example 5. Consider again Example 1 and assume the rotation rate w is greater
than 1. We argued previously that the set of ordinary points is then the open disk
centered at the origin of radius p=1/w. Furthermore, it is clear that in this case the
boundary of this disk is also an envelope for the family .5 of separation lines. We
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see from Ficure 7 that this disk has a parametrization P(6) = p(cos(6 + ap(B)),
sin(6 + ap(B)). We can confirm this observation using our parametrization (7). We

have, r=f(0)=1, k=1, cos a(s) =p, Q(s)=sin als)=11—p?, and Ws) =
pT + 11— p>N where T = —sin i + cos 6j and N = —cos 0i — sin 6j. Substitution
into equation (7) yields

P(0) = (pzcos 0—py1l—p>sin@, pZsin 6+ py1l—p*cos 0).

We showed in Example 1 that a,(6) is the constant arccos p. It immediately follows
from the addition formulas for sine and cosine that P(6)= p(cos(6+ a,(6)),
sin (0 + a,(0)).

Next we wish to show that the boundary of the set of ordinary points is a subset of
the union of the screen with the envelope for the family of separation lines.

THEOREM 4 . Let S denote a boundary point of the ordinary set. Then S is either on
the screen or on the envelope of the family of separation lines.

Proof. Because a complete proof of this result is rather lengthy, we will merely
sketch the argument. Suppose S is a boundary point of the set of ordinary points that
does not belong to the screen. Then there is a separation line L(s) through some g(s)
that contains S. Assume without loss of generality that s =0 and consider the
separation line L = L(s) through g(s) for a negative value of s very close to 0. Since
g(0) will then belong to the extraordinary side of L(s), L(s) must intersect L(0)
either at the point S or at a point between S and g(0) in order that S not be on the
extraordinary side of L(s) and thus isolated from the set of ordinary points. We let
A(s) denote the intersection of L(s) and L(0) for s a negative number close to 0.
Likewise, for s a very small positive number, the intersection B(s) of the separation
line L(s) with L(0) must either be at S or S must lie between B(s) and g(0). (See
Ficure 10 for a typical picture.) It can be shown that the existence of boundary point
S implies «(0) + a,(0) > 0 so that an envelope P = P(s) for the family of separation
lines is defined for values of s near 0. An envelope for a family of curves is sometimes
referred to as the locus of intersections. What this means for our family & of
separation lines, is that as s approaches 0, both A(s) and B(s) approach the point
P(0) on the envelope of Z. Since S is always “between” A(s) and B(s), the squeeze
theorem implies S =P(0) and S is on the envelope.

2(0)

s A(s)
B(s)
L(0)
FIGURE 10
Intersecting separation lines near a boundary point S.
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It follows from Theorem 4 that to understand the “shape” of the set of ordinary
points, it suffices to understand the shape of the envelope. In the next section we will
discover a surprising interpretation of this shape in the case of an elliptical screen.

4. Interpreting a fishy-looking envelope

We saw in PROPOSITION 3(a) that the only scenario for which there is a nonempty set
of ordinary points at arbitrarily high rotation rates is an elliptical screen with the
beacon located at a focus of the ellipse. In other words, for no other case will the set
of ordinary points display interesting “asymptotic” behavior at high rotation rates of
the beacon.

Ficure 11 illustrates the effects of an increasing rotation rate w on the envelope of

separation lines for the ellipse r = 5 We see that one effect of the rotation rate

2 + cos
is upon the size of the envelope. As the rate increases the envelope appears to shrink
to the second (non-beacon) focus of the ellipse. In fact, a straightforward continuity
argument using equations (7) shows this to be the case whenever the beacon is at a
focus of an elliptical screen.

A more subtle effect of the rotation rate is upon the shape of the envelope. Note
that in Ficure 11 as the rotation rate o increases, the envelope becomes more
symmetric and appears to rotate towards a vertical axis of symmetry. It also appears
that the influence of the rotation rate upon the shape of the envelope becomes less
pronounced as @ increases. In this regard, it is instructive to plot the envelopes
corresponding to relatively large rotation rates. Ficure 12 displays Mathematica plots
of the envelopes for w =100 and @ = 1000. At first glance the two envelopes appear
to be the same curve. However, by inspecting the scale of the two plots we see that
the envelope that corresponds to = 1000 is actually 10 times smaller than the
envelope for w = 100. Consequently, it appears that for large values of w the shape of
the envelope stabilizes while the size of the envelope becomes a linear function of
p=1/w. Such (approximate) linear behavior suggests that we are viewing some kind
of derivative.

Let us fix an elliptical screen E with foci F; and F, and assume the beacon is
located at F,. Let P(6, p) denote the envelope for the family of separation lines

1

OG

(OO0
(OO0

13 21

FIGURE 11
The vanishing ellipse (envelope version).
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0.02 w =100
0.015
0.01

0.005

-0.675 -0.67 -0.665/-0.66 -0.655 -0.65

G —

0.0025
0.002 w=1000
0.0015
0.001

0.0005

~0667 _-0.060 ~0.665
4
-0.6675 \-0.6665 -0.6655

FIGURE 12
Same or different?

through E corresponding to a rotation rate of w=1/p. When p=0 the family of
separation lines becomes the family % of Example 4 which has the everywhere
singular envelope P(6,0)=F,. The argument in Example 4 shows that «(s)+

%(8,0) # 0, from which it follows that for values of p near 0 a separation line is
defined for each value of 6 and we have «(s)+ %(s, p)# 0. We will restrict
attention to such values of p throughout the remainder of this paper. We then expect
P(6, p)=F, —l-pZ—ﬁ(G,O) for values of p close to 0. This suggests that for large
rotation rates, the shape of the envelope will be approximately that of the curve
6— ‘—;%(0, 0). Ficure 13 shows that a Mathematica plot of this curve is in agreement
with the expected shape.

Next, we wish to determine why the curve 6— %(0,0) has the shape of an

inverted, stylized “fish.” An important clue is provided in Ficure 14, which is taken
from page 133 of Curves and Singularities, by J. W. Bruce and P. J. Giblin [2]. The
family of lines in the figure consists of the perpendicular bisectors of segments joining
the left focus of the ellipse (the “eye” of the fish) to points of the ellipse. The
envelope of this family of lines is called an antiorthotomic of the ellipse. (The locus of
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-15 -1 —0.5\/0.5 1 15
FIGURE 13

JP
The partial derivative curve %(0, 0).

reflections of a fixed point in the tangent lines of some curve is known as an
orthotomic of the curve. By construction, the orthotomic of the “fish” curve with
respect to the left focus of the ellipse is the ellipse itself. Hence, this fish-shaped
curve is known as an antiorthotomic of the ellipse.) The similarity in shapes suggests
that the curve 6 — 3—1)(0,0) is an antiorthotomic of some ellipse. While our elliptical
screen is an obvious candidate, some experimentation with Mathematica shows that,

in general, the curve 6— Z—i(@,O) has neither the size nor the shape nor the

orientation of an antiorthotomic for our screen. Nonetheless, the similarity in shapes
between our partial derivative curve and the antiorthotomic of an ellipse is so close
that it would be a mistake to dismiss some sort of connection between the two. In
order to make this connection, we need first to present a natural transformation of any
ellipse into a second ellipse.

FIGURE 14

The antiorthotomic of an ellipse (p. 133 of Curves and Singularities, by J. W. Bruce and
P. 1. Giblin).
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Suppose F, and F, denote the foci of an ellipse E in the plane. We let F\(E)
denote the set of points that results if each point on E is scaled “away” from F, by
the reciprocal of its distance to F,. More precisely, a point Q is in F,(E) if and only if
there exists a point P on E such that Q is the image of P under the dilation with
center F, and ratio 1/dist(F,, P). Note that when E is a circle then F,(E) is simply
the unit circle concentric with E. Furthermore, it is easy to see that if E and E' are
similar ellipses with F, a focus of E and F] a focus of E’, then F,(E) is congruent to
F|(E'). We can therefore think of the transformation E — F,;(E) as an “elliptical” or
“two-point” generalization of unit normalization. Of particular significance is the fact
that the elliptical transform of an ellipse is again an ellipse.

PROPOSITION 5. If F, is a focus of an ellipse E of eccentricity e, then F(E) is an
ellipse with one focus at F,

Proof. Let F, and F, denote the foci of E and choose a system of polar

coordinates with pole at F, and initial ray F,F,. Without loss of generality it may be
. ; " — — A

assumed that E has a polar equation of the form r=f(0)=;——;

positive constant A. Suppose P is the point r=£(0) on E. Then f(6) = dist(F,, P)

and dist(F,, P) + dist(F,, P) = —=;. Consequently,

for some

2A(1—ecos ) —A(l —e?)
(1—e*)(1—ecosh)

dlst(F,,P)—————f( ) =

and a little algebra shows that the image of P under the dilation with center F, and
ratio 1/dist(F;, P) is a point whose distance to F, is

(-e)/(re)
" 1-2ecos 6/(1+e?)

We have already observed that the similarity class of E determines the congruence
class of F,(E). In fact, it is straightforward to show that F|(E) is the unique ellipse
with eccentricity —*

1+

a focus at F|, center on ray F|F,, and semiminor axis 1.

e?’
Ficure 15 illustrates the effects of this transformation on several choices of E. Our
next goal is to relate the partial derivative curve 6— %(0,0) with the elliptical
transformation of our screen.

THEOREM 6. Let P(0, p) denote the envelope of the family of separation lines
associated to a rotating beacon problem within an elliptical screen of eccentricity e,

beacon at a fixed focus of the screen, and rotation rate w =1/p. The curve j—i(@, 0) is

then an antiorthotomic of an ellipse of eccentricity 1+Z = and semiminor axis 2.
pe

Furthermore, this antiorthotomic has an axis of symmetry orthogonal to the major axis
of the elliptical screen.

Proof. Assume that g(s) is a unit speed parametrization of an elliptical screen with
the beacon at the right-hand focus F,, Frenet frame T and N, and curvature k. Let
a(s, p) = a,(s) denote the angle between T and the separation line through g(s)
that corresponds to a rotation rate of w= 5 The vector field W, = W(s, p) =

cos aT + sin N is then a spanning vector field for the family of separation lines
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FI(E) E/‘OB‘

L=
3 -25 -2 -15 -1 —05 2+ cos 6
U

-1

2

4

E:r=——
3+ 2cos 6

1
" 3+cosf

E: r

FIGURE 15
Transforming an ellipse E into a second ellipse F1(E).

corresponding to rotation rate w. Define W, = W,(s, p) = —sin o T + cos aN. Then
W,  Ja IW, Jda
ap = ﬁ_pWZ and Js ( E)WZ (9)
Likewise,
J Wg Ja d Wg _ Jda
P —(9—10W1 and ral —(K+ W)Wl. (10)

It follows from (7) that for fixed p,

sin «

P(s,p) =g(s)+Q(s,p)Wi(s,p), Q(s.p) =——F—.

K+%

is an envelope of the corresponding family of separation lines. We wish to show that
g—i(s, 0) is an antiorthotomic of an ellipse. Using the equations above, we have

JP _ JQ

ap  dp 2

da
W, + Qa—pW9. (11)
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We will first show that the tangent vector ;T;;%(s, 0) to ’;—P(S,O) is a multiple of

Wi(s,0). Differentiating both sides of equation (11) with respect to s and using
equations (9) and (10), we have

9°P 9%Q da da 9Q da)  dQ da J%a
&.S&p—(é‘sﬁp—Qﬁp(K-i__))W +( ( +%)+ ds é‘p+Qé'Sé‘p Wa.

It suffices to show that the coefficient of W, vanishes when p=0. By definition,
(k+ Z—f)@ —sin a =0, identically. leferentiating both sides of this equation with
respect to p yields (k + M)[)Q + Zp —=Q — (cos oz)ég =0. Equation (i) of Example 4
implies —(s 0) = —cos a(s 0) Replacing — cos a by 2 > 29(5,0) we see that the

coefﬁclent of Wy(s,0) is indeed 0. As a result, we have shown that at nonsingular
points, the tangent line to the curve %—g(s, 0) is parallel to the line

through g(s) and the non-beacon focus F, of the ellipse. (Recall that all the
“separation lines” pass through F, when p=0.)

It follows that the translate F, + &—(s 0) is an envelope for the family of lines
F={M(s)} where M(s) is the line thr ough F, + &P(s 0) parallel to the line through
F, and g(s). On the other hand, we are endeavonng to also show that this curve is the
antiorthotomic of some ellipse. Consider the locus of reflections of the non-beacon
focus F, through every line in . Since W(s,0) is parallel to M(s) and since

3—p (;S L+ Q’MW,, M(s) will be located a distance of |Q(s,0) aa(s 0)| from F,.

We saw in Example 4 that Q(s, 0) is the distance from g(s) to F,. From the definition
of a separation line we know that

Cos a = p f,
Ve Ve "

where r=f(6) is the polar equation of the ellipse. It follows that cos a(s,0) =
£ /) Differentiating both

o0 Vi) +120)

sides of equation (12) with respect to p yields the equation (—sin a)% = L

Solving, we find that Y

; we then also have sin a(s,0) =

—1

94 ¢ 0) = 1 -1
9P sin a(s,O)\/f’zi-l-f2 f

Therefore, the distance from F; to the line M(s) is the ratio QJE(SS;) ) of the distance

from g(s) to F, to the distance from g(s) to the beacon F,. Furthermore, we know
that M(s) is parallel to the line through g(s) and F, and is on the side of this line

opposite the direction of Wy(s,0) (since Q(s, O)‘;—Z(s,O)= _?((:;0) is negative).

Consequently, the operation of reflection of F, through M(s) yields the same point as
the operation of first scaling g(s) “away” from F, by twice the reciprocal of the
distance from g(s) to F,, then rotating this scaled point 90 degrees counterclockwise
about F,. If this operation is applied to each point g(s) on the elliptical screen, the
resulting collection of points is the orthotomic (with respect to F,) of the (translated)

partial derivative curve F, + ‘;—E(s, 0). Scaling by twice the reciprocal simply makes the
orthotomic twice as big as scaling by the reciprocal, and the only effect of rotating 90
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degrees about F| is to change the orientation of the orthotomic. Thus, it immediately
follows from Proposition 5 that this orthotomic is an ellipse and the translate

F, + ‘;—ﬁ(s, 0) is an antiorthotomic of this ellipse. Therefore, %(s, 0) is an antiortho-

tomic for a translate of this ellipse.

~

—

-2 -1 g
N~
FIGURE 16

JP
The curve W(B, 0) is the antiorthotomic of an ellipse.

89

Ficure 16 illustrates Theorem 6 in the case of the elliptical screen r = T

5. Further questions and conclusions

Theorem 6 answers our question about the “shape” of the partial derivative curve
‘;—P(s, 0). Perhaps the next natural problem would be to determine the shape of the

higher order partial derivative curves %(s, 0). For example, Ficure 17 shows the
partial derivative curves corresponding to n = 1,2, 3 and 4 for the ellipse r = 2-!-—105(9'
Inspecting Ficure 17 one might suspect that the odd order partial derivative curves
have an axis of symmetry orthogonal to the major axis of the elliptical screen, while for
the even order partial derivative curves the (extended) major axis of the screen is an
axis of symmetry. A careful bookkeeping of the even and odd functions that appear in
the expressions for the partial derivative curves shows that this is indeed the case.
Unfortunately, the authors have had no success in interpreting the shape of these
higher order partial derivative curves. Do there exist geometrical interpretations
analogous to that in Theorem 67

The global behavior of the envelope for a family of separation lines is worthy of
further study. For example, it can be shown that if the envelope has self-intersections
then some type of singular behavior (cusps, running off to infinity, etc.) must occur.
What other results of this type are there? (In this regard, we intentionally avoided the
consideration of singularities in our parametrization. What can be said if singularities
are allowed?)
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n=2
0 2

500
n=4

0

FIGURE 17
[971
The curves WI:(O, 0), for n =1, 2, 3, and 4.

To conclude, we hope to have shown the reader that the rotating beacon problem is
not simply an “old chestnut” located somewhere in the related rates section of his or
her calculus textbook. Indeed, the authors have found the study of this problem to be
a source of surprising connections between calculus and geometry. We hope that
some reader will be inspired to continue the study of these connections.
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Introduction

I propose to describe a course in abstract algebra which I taught in an In-Service
Master’s Programme for Teachers of Mathematics at our university. Students do not
follow this course with another in abstract algebra, so I was fortunate in not having to
worry whether I had covered this or that material for the next algebra course. This
presented an opportunity and a challenge: What are some of the major ideas of
abstract algebra that I would want to impart? What algebraic legacy would I want to
leave the students with? Since the students were high school teachers of mathematics,
I wanted the course also to have at least broad relevance to their concerns as teachers.

All this suggested to me that the history of mathematics should play an important
role in the course. History points to the sources of abstract algebra, hence to some of
its central ideas; it provides motivation; and it makes the subject come to life.

To set the context for the course, here is a history of abstract algebra—in 100 words
or less.

Prior to the 19th century algebra meant essentially the study of polynomial
equations. In the 20th century algebra became the study of abstract, axiomatic systems
such as groups, rings, and fields. The transition from the so-called classical algebra of
polynomial equations to the so-called modern algebra of axiom systems occurred in
the 19th century. Modern algebra came into existence principally because mathemati-
cians were unable to solve classical problems by classical (pre-19th century) means.
They invented the concepts of group, ring, and field to help them solve such problems
(2], [4], [14], [16], [17], [27], [28].

This mini-history of algebra suggests the major theme of the course, namely
showmg how abstract algebra originated in, and sheds light on, the solution of

“concrete” problems. It is a confirmation of Whitehead’s paradoxical dictum that “the
utmost abstractions are the true weapons with which to control our thought of
concrete fact” [18, p. 466]. What I do in the course can be represented schematically
as follows:

7 Solutions of original problems
T~ Solutions of other problems

Problems ——— Abstractions

The item “Solutions of other problems” is intended to convey an important idea,
namely that the abstract concepts whose introduction was motivated by concrete
problems often superseded in importance the original problems which inspired them.
In particular, the emerging new concepts and results were employed in the solution of
other problems, often unrelated to, and sometimes more important than, the original
problems which gave them birth. I will call the solutions of such problems “payoffs.”
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ProBLEM I. Why is (—=1)0(—=1)=1?

This problem is an instance of the issue of justification of the laws of arithmetic. It
deals with relations between arithmetic and abstract algebra, and it leads the students
to the concepts of ring, integral domain, ordered structure, and axiomatics.

The above problem became pressing for English mathematicians of the 19th
century, who wanted to set algebra—to them this meant the laws of operation with
numbers—on an equal footing with geometry by providing it with logical justification.
The task was tackled by members of the Analytical Society at Cambridge [21]. We will
focus on Peacock’s work, Treatise of Algebra (1830), which proved the most influen-
tial.

Peacock’s major idea was to distinguish between “arithmetical algebra” and “sym-
bolical algebra.” The former referred to operations involving only positive numbers,
and hence in Peacock’s view required no justification. For example, a — b-c)=
a+c¢—b is alaw of arithmetical algebra when b > ¢ and a > (b —¢). It becomes a
law of symbolical algebra if no restrictions are placed on a, b, and c¢. In fact, no
interpretation of the symbols is called for. Thus symbolical algebra is the
subject—newly founded by Peacock—of operations with symbols which need not
refer to specific objects but which obey the laws of arithmetical algebra. Peacock’s
justification for identifying the laws of symbolical algebra with those of arithmetical
algebra is his Principle of Permanence of Equivalent Forms (a type of Principle of
Continuity going back at least to Leibniz):

Whatever algebraic forms are equivalent when the symbols are general in
form but specific in value, will be equivalent when the symbols are general
in value as well as in form.

Thus Peacock decrees that the laws of arithmetic shall also be the laws of
(symbolical) algebra—an idea not at all unlike the axiomatic approach to arithmetic.
For example, we can use Peacock’s Principle to prove that (—x)(—y) = xy, as follows.

Since (a —b)Xc¢ — d) = ac + bd — ad — bc whenever a >b and ¢ > d, this being a
law of arithmetic and hence requiring no justification, it also becomes a law of
symbolical algebra—that is, without restrictions on a, b, ¢, d. Letting a =0 and ¢ =0
yields (=bX —d) = bd, and completes the proof.

The significance of Peacock’s work was that symbols took on a life of their own,
becoming objects of study in their own right rather than a language to represent
relationships among numbers. Some have said that these developments signalled the
birth of abstract algebra [2].

We now make a seventy-year leap forward and take a modern, Hilbertian approach
to the above topic. The idea is to define (characterize) the integers axiomatically as an
ordered integral domain in which the positive elements are well ordered ([19], [24]),
just as Hilbert (in 1900) characterized the reals axiomatically as the maximal
archimedean ordered field [3], [11]. Of course, in the process we must define the
various algebraic concepts that enter into the above characterization of the integers.
We can then readily prove such laws as (—a)(—=b) = ab and a X 0 = 0. This was done
in the more general context of rings by Fraenkel in 1914 [4], [7].

Payoffs: The following issues arise from the account above:

(a) How can we establish (prove) a law such as (—1)(—1) = 1? This question leads
to axioms. We cannot prove everything.
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(b) What axioms should we set down to give a description of the integers? This
question enables us to introduce the concepts of ring, integral domain, ordered
ring, and well ordering (induction).

(c) How do we know when we have enough axioms? Here we introduce the idea of
completeness of a set of axioms.

(d) What does it mean to characterize the integers? This sets the stage for the
introduction of the notion of isomorphism.

(e) Could we have used fewer axioms to characterize the integers? For example,
a+b=>b+a is not needed. Here we come face to face with the concept of
independence of a set of axioms.

(f) Are we at liberty to pick and choose axioms as we please? This question permits
us to introduce the notion of consistency, and more broadly, the issue of
freedom of choice in mathematics.

The innocent-looking problem (—1)(—1) = 1 can be a rich source of ideas!
ProBLEM II. What are the integer solutions of x* + 2 = y°?

This diophantine equation is an example of the famous Bachet equation x? + k = ¢/,
introduced in the 17th century and solved only recently for arbitrary k. The problem
deals with relations between number theory and abstract algebra, and it gives rise to
the concepts of unique factorization domain and euclidean domain—important exam-
ples of commutative rings.

We begin with a simpler problem, namely to solve the diophantine equation
v +y*=2z2 with (x, y) =1, that is, to find all primitive Pythagorean triples. Al-
though the solution was known in ancient Greece over 2000 years ago, if not earlier,
we are interested in an “algebraic” solution—a legacy of the 19th century.

The key idea is to factor the left side of x® +y* =z? and thus obtain the equation
(x + yi)(x —yi) =z* in the domain G ={a + bi: a,b € Z} of Gaussian integers. This
domain shares with the integers the property of unique factorization. In particular,
since x +yi and x — yi are relatively prime in G (this follows because x and ¢ are
relatively prime in Z) and their product is a square, each is a square (in G). Thus
x +yi = (a + bi)* = (a® — b*) + 2abi. Comparing real and imaginary parts yields x =
a®* —b?, y=2ab, and since x* + y> =z, z=a” + b*. Conversely, it is easily shown
that for any a,b € Z, (a* —b?,2ab, a* + b*?) is a solution of x> +y* =z We thus
get all pythagorean triples. It is easy to single out the primitive ones among them.

Coming back to x* + 2 = y*, we proceed analogously by factoring the left side and
get (x + Voi)(x—v2i)= y°, an equation in the domain D ={a + bV2i: a,b 7).
Here, too, we can show that (x + V2, x —v2i) =1, hence x + V2i and x — V21 are
cubes in D. In particular, x + V2i=(a+bV2i). Simple algebra yields x = £5,
y = 3. Of course it is easy to see that these are solutions of x +2=y® What the
argument above shows is that they are the only solutions.

The Fermat equation x®+y” =23 can be dealt with similarly: z® =23 +y°=
(x + y)(x + yo)x + yw?)—an equation in the domain E={a +bw: a,b€7Z, w a
primitive cube root of 1}. The technical details are more complex here [1], [9].

Justifying the “details” in the solutions of the three diophantine equations above
involves considerable work. In particular, we need to introduce the notions of unique
factorization domain (UFD) and euclidean domain and to discuss some of their
arithmetic properties. The three diophantine equations can be solved in the indicated
manner because the respective domains G, D, and E in which they were embedded
are UFDs.
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Payoffs:

(a) We can solve Fermat’s problem about the representability of integers as sums of
two squares by a careful scrutiny of the primes in the domain G of Gaussian
integers [9], [20].

(b) In arithmetic domains in which unique factorization fails we introduce, follow-
ing Dedekind, ideals. We can thereby obtain a proof of Fermat’s Last Theorem
—the unsolvability in integers of x? +y? =zP—for all p <100 [20]. Here
appear the elements of a rich subject—algebraic number theory. The subject
originated to a large extent in attempts to solve such diophantine equations as
we have considered above, in particular the Fermat equation [14].

ProBLEM III. Can we trisect a 60° angle using only straightedge and compass?

This is an instance of one of the three famous classical construction problems going
back to Greek antiquity. It deals with relations between geometry and abstract
algebra, and it leads the students to the concepts of field and vector space. This is a
standard problem, usually given following the presentation of Galois theory. I put it
centre-stage as a means of providing a “gentle” introduction to fields.

The problem of trisection was posed about 2500 years ago but solved only in 1837,
by Wantzel, following the introduction of the requisite algebraic machinery. One must
persevere!

The initial key idea was the translation of the geometric problem into the language
of classical algebra—numbers and equations. This occurred in the 17th century. Thus
the basic goal became the construction of real numbers, often as roots of equations.
(“Construction” will henceforth mean “construction with straightedge and compass.”)
How do fields and vector spaces enter the picture?

If @ and b are constructible, so are a +b, a — b, ab, and a/b (if b # 0)—all this is
easy to show. Thus the constructible numbers form a field. But what are they?

Given a unit length 1, the above implies that we can construct all rational numbers
Q. We can also construct, for example, V2, as the diagonal of a unit square. More
generally, if a is constructible, so is Va. We can therefore construct the field
QWa)={p +qva: p,q € Q}. This introduces the important notion of field adjunc-
tion. The objective is to show that all constructible numbers can be obtained by an
iteration of the adjunction of square roots.

To proceed we need a numerical measure of how far Q(a) is removed from Q.
This leads to the concept of degree of a field extension, here the dimension of QWa)
as a vector space over Q. The problem of trisection is next phrased in terms of fields.
This is now late-19th-century abstract algebra. Enough machinery of field extensions
is introduced—and not much more than that—to solve the trisection problem [12].

A word about history versus genesis. Wantzel solved the trisection problem in 1837,
essentially as we do: he reduced the problem to the solution of polynomial equations;
introduced irreducible polynomials and rational functions of a given number of
elements; and he derived conditions for constructibility in terms of the iteration of
solutions of polynomial equations [30]. Although Wantzel’s approach is similar in spirit
to the modern one, he used neither fields nor vector spaces. We use both. Our
approach in this course is genetic rather than strictly historical when this serves our

purpose.
Payoffs:

(a) A characterization of the real numbers as a complete ordered field [3].
(b) A discussion of algebraic and transcendental numbers [8], [20].
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(c) A characterization of finite fields [10], [19].

(d) Proof of a special case of Dirichlet’s theorem on primes in arithmetic progres-
sion, namely that 1,1+ 5,1+ 2b,1+ 3b,... contains infinitely many primes.
For this we need cyclotomic field extensions [8].

PrROBLEM IV. Can we solve x®> —6x +3 =0 by radicals?

Problems such as this, dealing with the solution of equations by radicals, gave rise to
Galois theory. They touch on the relations between classical and abstract algebra.

Galois theory, in its modern incarnation, is a grand symphony on two major themes
—groups and fields, and two minor themes—rings and vector spaces. Galois theory is
thus a highlight of any course in abstract algebra. But to do it in detail would take
almost an entire term. Moreover, the proofs of theorems are often long and some-
times tedious, and the payoff is long in coming. The intent in this course, then, is to
get across some of the central ideas of Galois theory (such as the correspondence
between groups and fields and what it is good for) often with examples rather than
proofs.

We begin where the history of the subject begins: with Lagrange. Lagrange
analyzed past solutions of the cubic and quartic to see if he could find in them a
common method extendible to the quintic. Although he did not resolve the problem
of solvability of the quintic by radicals, he did light upon a key idea, namely that the
permutations of the roots of a polynomial equation are the “metaphysics” of its
solvability by radicals [17], [27].

I try to give students a sense of Lagrange’s ideas by showing how permutations of
the roots of cubic and quartic equations help solve them by radicals [5], [6], [27].
Implicit in this is the notion of a group.

Although the Fundamental Theorem of Galois Theory is not needed to resolve the
problem of solvability of the quintic, we do discuss the theorem, illustrating it with
examples. It is a beautiful and important result, and it has nice applications—payoffs
—aside from solvability by radicals.

Payoffs:

> <«

(a) Proofs of several important number-theoretic results: Fermat’s “little” theorem,
Euler’s theorem, Wilson’s theorem. The proofs use only very elementary group
theory [23].

(b) Classification of the regular polygons constructible with straightedge and com-
pass. Although Galois theory yields a rather quick solution [25], the problem
can be resolved using some field theory (cyclotomic extensions) and very
elementary group theory [23].

(c) An essentially algebraic proof of the Fundamental Theorem of Algebra [25].
4 5 6
(d) Proof of the irrationality of expressions such as V3 + V4 + 72 [22].

PROBLEM V. “Papa, can you multiply triples?”

This problem deals with extensions of the complex numbers to hypercomplex
numbers, for example, the quaternions. The question in the title was asked by
Hamilton’s sons of their father to inquire whether he had succeeded, after years of
effort, in obtaining an algebra of triples of reals analogous to the complex numbers.
The problem bears on relations between arithmetic/classical algebra and abstract
algebra, and it gives rise to the concepts of an algebra (not necessarily associative) and
a division ring (a skew field).
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To set the scene, I give the students a brief history of complex numbers. An
important point to keep in mind here is that complex numbers arose in connection
with the solution of the cubic rather than the quadratic [15].

Hamilton’s quaternions—a noncommutative “number system” —was conceptually a
most important development, for it liberated algebra from the canons of arithmetic
[16]. The history of their invention in 1843 is well documented and gives a rare
glimpse of the creative process at work in mathematics [29].

Are there “numbers” beyond the quaternions? (What is a number, anyway?)
Cayley’s and, independently, Graves’ octonions (8-tuples of reals) gave an affirmative
answer, and raised the obvious question whether there are numbers beyond the
octonions. This time the answer was negative; it was given by Frobenius and C. S.
Peirce, again independently [13]. Implicit in these ideas are the notions of division

ring and algebra.
Payoffs:

(a) Ideas on quaternions can be used to prove Lagrange’s four-squares theorem:
Every positive integer is a sum of four squares [9], [10].

(b) Are complex numbers unavoidable in the solution of the so-called irreducible
cubic? Yes. There is a proof using the considerable power of Galois theory [3],
but the result can also be established by means of elementary field-extension
theory [26].

General remarks on the course

(a) The first and last problems, and probably also the second, are atypical in an
abstract algebra course, but I have found them to be pedagogically enlightening
and rich in algebraic ideas. Historically, they signalled the transition from
classical to modern (abstract) algebra.

(b) The first problem begins with a “simple” numerical question. The idea is to
ease students gently into the abstractions.

(c) While the sequence of topics in algebra books, and therefore in algebra courses,
is usually: groups, rings, and fields, our problems introduce students first to
rings, then fields, and finally groups. I have found this order to be more
effective. It leaves to the end the conceptually most difficult notion, that of a
group, which is “unnatural” to students.

(d) T have listed only five problems. It might be argued that this does not appear to
be sufficient for an entire course. However, the problems are wide-ranging and
rich in ideas, and are extendible in various directions, some of which are
indicated in the various “payoff” sections.

(e) No textbook is used in the course. However, many references are given, both
technical and historical, and students are expected to read some of them!

(f) The historical material used in the course comes mainly from secondary sources.
Asking students (and instructors!) to read and assimilate primary sources would
make the course unreasonably difficult. The course is quite challenging as it is.
And its objectives can be met using secondary sources.

(g) The course tries to deal with wider mathematical ideas in addition to the
standard algebraic fare: the “why” and “what for” in addition to the “how.”
This is reflected in the assignments. Thus, aside from being asked to do the
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usual types of problems, for example, to show that the additive inverse in a ring
is unique, students are expected to write “mini-essays” involving both historical
and technical matters, for example, to discuss De Morgan’s contribution to
algebra and how it advanced abstract algebraic thinking.

To read independently in the mathematical literature, and to write about
what they have read, are tasks which mathematics students are not—but should
become—accustomed to.
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[. Introduction

In the last thirty years scientists have found that unusual and unexpected evolution
patterns arise frequently in important deterministic processes of interest to many
different fields, including Chemistry, Physics, Biology, Medicine, Engineering, and
Economics. Examples of such processes include chemical reactions, pulsation in gas
lasers, atmospheric changes, blood cell oscillations, and neural networks. The most
peculiar aspect of these patterns is their random-like behavior. The systems are
deterministic. Consequently they are, at least in theory, perfectly predictable. Hence,
it may seem contradictory to talk about random-like behavior. However, more often
than not their evolution appears as a random sequence of events, at least to superficial
analysis.

The name “chaotic systems” has been proposed to collect them loosely under a
common roof. Biologists, chemists, mathematicians, philosophers, physicists, and
others have tried to capture in a formal definition the distinctive and essential features
characterizing these systems among all dynamical processes. The success has been
limited. On the one hand, everyone recognizes that certain systems cannot be
considered chaotic; on the other hand we could say, with a bit of exaggeration, that
there are as many defin’itions of chaos as experts in this new area of knowledge (see,
for example [5], [3], [8], [4], [7]). Moreover, and this is certainly not a desirable
situation, the various definitions are not equivalent to each other.

Many reasons can be given for this state of affairs, and the fact that chaotic behavior
is of great interest to many disciplines is certainly one of them. It is difficult to find a
common ground that meets the needs and the standards of different fields. For
example, an experimental scientist is inclined to adopt a definition that can be tested
in a laboratory setting and is less concerned with exceptions. A theoretician, however,
is interested in characterizing chaotic behavior uniquely, and does not feel the
urgency to provide a definition which can be easily verified by means of numerical or
experimental techniques.

The main purpose of this paper is to bring a contribution to the efforts aimed at
capturing the distinctive features of chaotic systems in a way that is easily accessible to
undergraduates. This purpose is achieved in two ways. The first is by introducing the
reader to those definitions of chaotic systems that are more frequently encountered in
the literature and do not use advanced mathematical concepts and tools. We illustrate
the key components of each definition. We also include a comparison table (Table 3.1)
to provide the reader with an “at a glance” overview of the common traits and
differences among the various definitions. The second is by analyzing in more detail
two simple definitions proposed in recent years, one by S. Wiggins [8] and the other
by M. Martelli [6]. Although formulated in different manner, the two definitions are
practically equivalent. Moreover, they seem to embody the essential features which all
other definitions are trying to capture. Finally, the characterizing traits of these two
definitions are suitable for easy and reliable numerical verification. Therefore, they
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appear to represent the most effective way to introduce chaotic behavior at an
undergraduate level.

The paper is organized as follows. In section 2 we introduce terminology and
notation frequently used throughout. In section 3 we present some of the most
common definitions of chaos; and we analyze briefly their key components. In section
4 we establish the basic equivalence of the definitions of Wiggins and Martelli. We
conclude the paper (section 5) with an analysis of the baker’s transformation and with
short remarks on numerical tests of chaotic behavior.

Before embarking on the plan we have outlined, we illustrate a simple dynamical
system, which is chaotic according to all definitions presented later. The purpose of
this discussion, conducted mainly by means of graphs, is to make the reader familiar
with the characteristic features that each definition of chaos tries to capture.

Example 1.1. Let f(x)=4x(1 —x). Notice that f maps the interval [0,1] onto
itself. Consider the dynamical system x,,, =f(x,) governed by the function f in
[0,1]. Select the point x, = 0.3 and study the sequence of iterates of f: x, =f(0.3),
Xy =f(x)), ... ,x, . =f(x,), .... To see how this sequence behaves, plot the points
(x,,x,.y) for n = 500,501,...,1000 and for n =1500,1501,...,2000 in two
side-by-side plots. (See Ficure 1.1.) The points belong to the graph G(f) of f since
X, 41 =f(x,). It appears that they fill up G(f) entirely in both cases. This graphical
evidence suggests that no matter how small an interval [a, b] is selected in [0, 1], the
sequence x; =f(0.3), x,=f(x)),...,x,,; =f(x,),... visits [, b] infinitely often.
This is one feature of chaotic systems which all definitions try to capture: the presence
of a sequence of iterates (orbit) that passes “as close as we like to any possible state of
the system.” We shall make this idea more precise in section 2 with the definition of
topological transitivity.

0:6 '-\\ o.‘ 6 / \\

0.4 \ 0.4 \\
02t/ \ 0.2 \
\
02 04 06 08 1 02 04 06 08 1
FIGURE 1.1

On the left graph we have plotted (x,, x,,,) for n=2500,...,1000 and on the right for
n = 1500, ...,2000 from the same sequence of iterates of f starting at x, = 0.3. It appears that
in both cases the sequence is “reconstructing” the entire graph of f.

To illustrate another important property of the system x,,, =f(x,), consider two
sequences of iterates, one starting (as before) at x;=0.3 and the other starting
at a point very close to 0.3. Choose, for example, y, =0.300001. Plot the points
(n,|x, —y,D), ie., the iteration number on the horizontal axis and the distance
between corresponding iterates of f on the vertical axis. At the beginning (for small
values of n) the two sequences are close to each other. Later, they become separated,
and the distance |x, — ), | oscillates between 0 and 1 in an unpredictable fashion. (See
Ficure 1.2.)
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FIGURE 1.2
The distance |x), —y,| is plotted versus the iteration number n. Notice that the two sequences
of iterates are very close for n=0,1,...,15. After that, separation takes over. Sometimes the

two sequences are very close (around n = 45 and n = 60), and sometimes they are as far as they
can be.

The graphical evidence suggests that the evolution of the system is very sensitive to
small changes. Thus, if this system were a model of a real process, we would be
tempted to conclude that its evolution, although governed by a known function, is
nevertheless “unpredictable,” since it is practically impossible to know the initial state
exactly. This is a second feature of chaotic systems which every definition tries to
capture, namely the sensitivity to small changes, and the unpredictability that comes
with it. We shall make this idea more precise with the definition of unstable orbits and
of sensitive dependence on initial conditions.

[I. Notations and definitions

Let F: DomF CRY— RY A set XC DomF is said to be invariant under the action
of F if F(X)cX. In the case when F(X) is bounded and F is continuous we can
assume that the closure of X is contained in the domain of F. Then the invariance of
X implies the invariance of its closure. In this paper we shall always assume, unless
otherwise stated, that F is continuous and its invariant sets are closed and bounded.

Let XCDomF CRY and assume that X is invariant. The discrete dynamical
system defined by F in X takes the form

X, =F(x,). (2.1)

Equation (2.1) provides the state x, ., of the system at time n + 1 once its state x, at
time n is known. Given an initial state x, € R, the sequence of iterates of F:

xo, ¥ =F(x,), vg=F(x;) =F(F(x9))=F*(x0),....x, =F"(x,),... (2.2)

is the orbit of x,, denoted by O(x,, F) or simply O(x,) when the function F is
clearly specified. An orbit O(x,) is periodic if for some p > 1

X, =X. (2.3)

The smallest integer p for which (2.3) holds is called the period of the orbit. When
p =1 the orbit O(x,) is stationary, and the point x,, now denoted by «x,, is an
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equilibrium point of the system. An orbit O(y,) is asymptotically periodic if there is
a periodic orbit O(x,) such that

fim [[x, ~ g, =0. (2.4)
n—o®

If, in addition, y; =x; for some k > 1, then O(y,) is eventually periodic.

A point y is a limit point of O(x) if a subsequence of O(x,) converges to y. The
set of limit points of O(x,) is denoted by L(x,). Under our standard assumptions on
X and F we have that L(x,) is closed and bounded and it satisfies the important

equality
F(L(xy)) = L(xy). (25)

The set L(x,) is finite if and only if O(x,) is asymptotically periodic. When L(x,) is
infinite we say that O(x,) is aperiodic.

O(x,) is said to be unstable if there exists r(x,) > 0 such that for every d > 0 we
can find y, € DomF and n>1 satisfying the two inequalities [ly, —xoll <d and
lly, —x,ll > r(x,). An orbit which is not unstable is said to be stable. When O(x,) is
contained in an invariant set X C Dom F, we say that O(x) is unstable with respect
to X if y, € X. Notice that, in this case, the set X has to be infinite.

Let X< DomF CRY. F has in X sensitive dependence on initial conditions if there
exists r, > 0 such that for every x, € X and d > 0 we can find y, € DomF and n > 1
with the property that |[x, — y,ll < d and [|x, —y, || > r,. Therefore, every orbit O(x)
with x € X is unstable with the same constant r,. Consequently, sensitive depen-
dence on initial conditions is stronger than instability. When X CDomF is an
invariant set and we require that y, € X, we say that F has in X sensitive depen-
dence on initial conditions with respect to X. In this case no point of X is isolated,
i.e., for every x € X and every ¢ > 0 we can find y € X, y #x, such that [[x —y|[<c.

A set UCX C R is said to be open in X if U= XN O where O is an open subset
of R9. The function F is topologically transitive on an invariant set X if for every pair
of sets U,VCX which are open in X, there exists an integer k>1 such that
FYU) NV # . This property, as we shall see in section 4, guarantees the presence
of an orbit “that passes as close as we like to any state of the system.”

I1l. Some common definitions of chaos

In this section we present some definitions of chaos that can be found in the current
literature and are accessible to undergraduates.

1. Li-Yorke chaos Let I be an interval and f:I =1 be a continuous function.
Assume that f has a periodic orbit of period 3. In a well-known paper Li and Yorke
[5] proved that

(i) f has periodic orbits of every period;

(ii) there is an uncountable set S CI such that O(x) is aperiodic and unstable

for every x € S.
Maps of this type have been called chaotic in the Li—Yorke sense, without specifying if
the chaotic behavior should be considered in the entire interval I or simply in the
closure of S.
One of the clear advantages of this definition is that it can be easily verified, by

means of graphical techniques, whether a continuous map has a periodic orbit of
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period 3. Moreover, property (ii) addresses, at least in part, the question of unpre-
dictability of the system, since the orbits starting at points of S are unstable. The
following simple example shows that the assumption of continuity is critical in the
Li—Yorke approach.

Example 3.1. Let f :[0,1] = [0, 1] be defined by

N_Jx+.5 0=<x<5
f(“)_{ 0 5<x<l1.

Notice that f is discontinuous at x =0.5. Every orbit of f in [0,1] is eventually
periodic of period 3. For example, for x,=0.2 we have x;, =0.7, x, =0, x5 =0.5,
v,=1 x5=0,....

We can also find examples of maps for which the set S is negligible, in the sense
that for every >0, S can be covered with a countable family of intervals of total
length not exceeding r. Consequently, the probability that an orbit O(x,) is not
asymptotically periodic is zero, and the chaotic behavior is not experimentally observ-
able. The following example illustrates the situation.

Example 3.2. Let

0 0<x<.25

N 4x—1 25<x< .5
=3 _4i43 5<x<15
0 TI5<x<].

It can be easily verified that O(23/65) is a periodic orbit of period 3 and f2(x) — 0
whenever x <1/3 or x >2/3. Moreover, f*(x)=0if x €1, =[5/12,7/12], whose
length is 1/6. The inverse image of this interval is made of those points x such that
F3x)=0 and is the union of the two intervals I, =[17/48,19/48] and I,, =
[29,/48,31 /48]. The total length of the two intervals is 1/12. The inverse image of
I,, U I, is the union of four intervals I,, = [65,/192,67 /192], I, =[77 /192,79 /192],
I, =[113/192,115/192], I,, =[125/192,127/192]. Their total length is 1/24. Ev-
ery point x of these four intervals has the property f*(x) = 0. Proceeding in this way
we find a family of disjoint intervals contained in the interval [1/3,2/3] and whose
total length is 1/6+1/12+1/24 + - =1/6(1+ 1/2+1/4+1/8+ ) =1/3.
Every point x that belongs to one of these intervals satisfies f"(x) =0 for some
n > 1. Hence the set of points S, whose orbit does not go to zero is negligible. Since
S C S, we see that the orbit of a point x selected at random in [0, 1] converges to 0.

08¢t

0.6

—

0.4 ¢

0.2 0.4 0.6 0.8 1
FIGURE 3.1
Shown are the points x such that f"(x)=0for n=1,2.
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The result of Li—Yorke does not hold in dimension higher than one. For example, a
rotation in R? of 120° around the origin has a periodic orbit of period three (all
non-stationary orbits are periodic of period 3), but fails to satisfy both (i) and (ii). The
orbits of such a system have neither of the two properties we indicated (see Example
1.1) as relevant to chaotic behavior. Table 3.1 compares the definition of chaos
according to Li—Yorke to the other definitions listed below.

TABLE 3.1 Comparison among different definitions of chaos

Definition map domain requirements | advantages weak points

Li—Yorke continuous | bounded | periodic orbit | easy to check can be used
interval | of period 3 only in R

Experimentalists” | continuous | X € RY sensitivity easy to check defines as
bounded, | on initial chaotic systems
closed, conditions which are not
invariant

Devaney continuous | X C R sensitivity, goes to the redundancy
bounded, | transitivity, roots of chaotic
closed, dense behavior
invariant periodic orbits

Wiggins continuous | X CRY | sensitivity, goes to the admits
bounded, | transitivity roots of chaotic | degenerate
closed, behavior chaos
invariant

Martelli continuous | X C R dense orbit “equivalence” | none of
bounded, | in X which with Wiggins, | the above
closed, is unstable easy to check
invariant numerically

2. Experimentalists’ definition of chaos (sensitive dependence on initial condi-
tions) According to many non-mathematicians, particularly physical scientists, a
dynamical system x,,,; = F(x,) is chaotic in an invariant set X if F has in X
sensitive dependence on initial conditions. Therefore, we may obtain very different
orbits from two almost identical starting points (see Example 1.1). It follows that the
evolution of the system is unpredictable, since it is practically impossible to know the
initial conditions exactly (mainly due to unavoidable measurement errors). This is
obviously an important feature of the experimentalists’ definition of chaos. An
additional merit is that sensitive dependence on initial conditions can be checked
numerically. However, despite the advantages, this definition of chaos is not satisfac-
tory. The following example illustrates some of the problems which may arise.

Example 3.3. Let D={x&R? : |[x]|<2}. Using polar coordinates define F:
D — D by

F(x)=F(p,0)=(p.0+p). (3.1)

Notice that for every p € (0,2] the set C,= {x € R?: ||x||= p} is invariant and the

dynamical system defined by F is a rotation in C,. Consequently, it does not seem

appropriate to label the system as chaotic in the invariant set C,. However, the system
has in C, sensitive dependence on initial conditions with r,=p. In fact, let x,=

(pg, 6y) and d>0. Choose n so large that = <d and po—gnz >0. Let y,=
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FIGURE 3.2
Plot of (n,llx,, —y,ID, with xy =(1,0) and y, = (1 — 0.017,0). We see that the distance can be
as large as the diameter of the smaller circle.

(pog— I, 0p). Then [lxy —yoll <d and

= (po. 0+ 1py), Y. =(po— 2, 0+np,— 7). (32)

Consequently |[x, —y,ll>r, and the system is chaotic in C, for every p<(0,2]
However, the system is non-chaotic in the disk D. We do not seem to have a
satisfactory situation (see Table 3.1).

3. Wiggins’ definition of chaos According to Wiggins [8] a map F is chaotic in an
invariant set X provided that

() F is topologically transitive in X;

(ii) F has in X sensitive dependence on initial conditions.

We shall see in section 4 that topological transitivity implies the existence of an orbit
“passing as close as we like to any state” of the system in X. Therefore the definition
of Wiggins embodies both properties mentioned in Example 1.1 as fundamental to
chaotic behavior. However, Wiggins’ approach presents some problems. For example,
the map F( p, 6) of Example 3.3 is chaotic in the sense of Wiggins in every circle C,
such that p/7 is irrational. In fact, F has sensitive dependence on initial conditions
in C,. Moreover, the orbit O(x,), x,=(p,0) visits every arc of C,, no matter how
small. Hence F is topologically transitive in C,. Notice that F is non-chaotic in any
annulus Rla,b]={x€D: a <|lx|][<bh,0<a <b <2} since F fails to be topologically
transitive. An additional problem with Wiggins’ definition arises from the so-called
“degenerate chaos” (see [1]), which is chaotic behavior in a finite set of points. In fact,
according to Wiggins a dynamical system can be chaotic in a singleton X = {x,}. For
example the system governed by the function

f(x) = —2lxl+1 (3.3)

is chaotic in the set X ={1/3}. Ficure 3.3 illustrates that orbits starting close to 1/3
move away from the equilibrium point (see Table 3.1 for a summary).

4. Martelli’s definition of chaos According to Martelli [6], F is chaotic in an
invariant set X provided that there exists x, € X such that

(i) L(xy) =X;

(ii) O(x,) is unstable with respect to X.
Since F(L(x,)) = L(x,) (see Equation 2.5) we obtain that F(X) =X, i.e., F is onto.
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The orbits of points close to 1/3 more away from the equilibrium point.

The map F(p, 8) of Example 3.3 is non-chaotic in the sense of Martelli in any
circle C , Or in any annulus Rla, b). In a circle C " the map fails to satisfy (ii), and in an
annulus Rla, b] fails to satisfy (i). Moreover, according to Martelli, no map can be
chaotic on a finite set, since instability of O(x,) with respect to X implies that X is

infinite.

5. Devaney’s definition of chaos A map F is chaotic in the sense of Devaney [3]
in an invariant set X if

(i) F is topologically transitive in X;

(i) F has in X sensitive dependence on initial conditions;

(i) the set P of periodic orbits of F is dense in X.
Devaney adds the density of P in X to the two conditions required by Wiggins, thus
bringing back, at least to some extent, a feature of Li—Yorke chaos. Moreover, as
Crannell [2] points out, the “requirement that periodic orbits be dense appeals to
those who look for patterns within a seemingly random system.”

It has been shown [1] that conditions (i) and (iii) imply (ii). In this sense, Devaney’s
definition of chaos is redundant. Moreover, as the following example shows, there are
systems that seem to deserve the label “chaotic” and do not satisfy the third
requirement of Devaney’s definition (see Table 3.1 for a summary).

Example 3.4. Let F be given in polar coordinates by F( p, 8) = (4p(1 — p), 6+ 1)
and let D(0, 1) be the invariant disk centered at the origin, with radius 1. The origin is
the only fixed point for F, and F does not have any periodic orbit of period p > 1. In
fact, F stretches or shrinks the distance of every point of D(0,1) from the origin,
while rotating the point by an angle of 1 radian. Since 1/ is irrational, no point
x, € O(x,) can come back to the same ray which contains x,. At the end of this paper
we will show that the dynamical system governed by F in D(0, 1) is “unpredictable”
and has orbits that pass as close as we like to every point of D(0,1). Thus this
system has exactly the two fundamental properties of chaotic behavior mentioned in
Example 1.1.

IV. Defining Chaos

Recall that, according to Wiggins [8], F is chaotic in an invariant set X if
(i) F is topologically transitive in X;
(ii) F has in X sensitive dependence on initial conditions.
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According to Martelli [6], F is chaotic in X provided that there existsx, € X such that
M) L(xg) = X;
(i) O(x,) is unstable with respect to X.

These two definitions can be considered equivalent. In fact, (see Theorem 4.1) F is
topologically transitive in X if and only if there exists x, € X such that L(x,) =X. In
addition, F has in X sensitive dependence on initial conditions with respect to X if
and only if O(x,) is unstable with respect to X (see Theorem 4.2).

There remains an important difference between the two approaches. Wiggins does
not require sensitivity with respect to X, while Martelli requires instability with
respect to X. Theorems 4.1 and 4.2 contain the theoretical results that establish the
practical equivalence between these two definitions of chaos. For both theorems we
provide a brief sketch of the proof, leaving details to the reader.

THEOREM 4.1. Let X CRY be closed and bounded and F:X — X be continuous.

Then F is topologically transitive in X if and only if there exists x, € X such that
L(x,) =X.

Proof. The “if” part is easy. The presence of an orbit O(x,) such that L(x,) =X
clearly implies topological transitivity.

The “only if” part is a bit more difficult. The basic idea is that given any positive
integer m we can cover X with finitely many balls of radius 1,/m and find a point x,,
whose orbit visits each ball of the covering. Moreover, the choice of x,, can be made
so that the sequence {x,,, m=1,2,...} converges. Let x, be its limit. It is easy to
verify that L(x,) = X.

m»

THEOREM 4.2. Let x, € X be such that L(x,) =X. Then F has in X sensitive
dependence on initial conditions with respect to X if and only if O(x,) is unstable with
respect to X.

Proof. This time the “only if” part is immediate. In fact, sensitivity to initial
conditions with respect to X clearly implies that O(x,) is unstable with respect to X.

The “if” part is a bit longer. Given ¢y, € X and d > 0, determine an iterate x, of
xy such that [|x, — yoll < d/2. This can be done since L(x,) = X. Next, one shows
that for every n > 1 the orbit O(x,) has the same instability constant of O(x,), i.e.,
r(x,) = r(xy). It follows that either some iterate y, of y,, is at least as far as r(x,)/3
from «x,,,, or this separation happens for some iterate z, of a point z, which is

)
closer than d to both y, and x,. In either case, we obtain that r(y,) > r(x,/3).

A second look at Example 3.4. With Theorem 4.1 and 4.2 we can establish that the
dynamical system of Example 3.4 is chaotic in D(0,1) according to Wiggins
and Martelli. We use the fact, well-established in the literature, that the map f(x) =
4x(1 —x) of Example 1.1 not only is topologically transitive in [0, 1] but has the
additional property that given any interval [a, b] C[0, 1], a <b, there is an integer p
such that f”[a, b] =[0,1]. Consequently, after finitely many iterations, the F-image of
a small open disk in D(0, 1) will contain an open set U C D(0,1) with a full radius.
The rotation of 1 radian spreads U entirely over D(0,1) in finitely many additional
iterations. Hence F is topologically transitive in D(0, 1). From Theorem 4.1 there is
xo € D(0, 1) such that L(x,) = D(0, 1). Consequently, using once more the statement
from Example 1.1, the orbit passes as close as we like to any point of D(0, 1). It is also
well known that the map f has sensitive dependence on initial conditions in [0, 1].
Hence, O(x,) is unstable in D(0, 1) and F is chaotic in D(0, 1) according to Wiggins
and Martelli. In Ficure 4.1 we plot [|x, —y,ll versus the iteration number n, with
xo=10(3,0) and y,=(.300001,0). (The reader should compare the graph with Fig.
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FIGURE 4.1
Plot of (n, [lx,, — y,,ID. The behavior of the distances repeats the situation of Example 1.1.

1.2.) The map F is non-chaotic in D(0, 1) according to Devaney. This example seems
to suggest that the density of periodic orbits may not be necessary in defining chaos.

V. Conclusion

The definitions of chaos of Wiggins and Martelli, together with the one of Devaney
and with the experimentalists” definition, can be applied to a certain class of maps with
“admissible” discontinuities. The class is denoted by QC, which stands for “quasi-con-
tinuous.” It can be shown (the result will appear in a forthcoming paper by A.
Crannell and M. Martelli), that the definitions of Wiggins and Martelli remain
equivalent in QC. In the following example we present the so-called baker’s transfor-
mation, which defines a well-known chaotic system in [0, 1], and which belongs to QC.

Example 5.1. Let B(x)=2x —[2x], where [2x] denotes the greatest integer less
than or equal to 2x. Notice that B maps [0, 1] into itself and it is discontinuous at
x=.5 and x = 1. The action of B and its iterates on the elements of [0, 1] is better
understood if we write them with their binary expansion. Then, for x €[0,0.5) we
have x =0.0aya;..., while for x €[0.5,1) we have x =0.1aya,... where a,, i =
2,3,..., are either 0 or 1. In both cases we obtain B(x) = 0.aya;... . Now we can
easily see that the orbit of x;=0. 0 1 00 01 10 11 000 001 010 100 ... has the
property L(x,) = [0, 1]. Moreover, O(x,) is unstable, since B'(x) =2 for x #0, 1.

Hence B is chaotic in [0, 1] according to Martelli’s definition (applied to QC).
Under the action of B the length of every interval [a, b] C[0,1], a <b is doubled
until, after finitely many iterations, we have B*a,b]=1[0,1]. Thus B is topologically
transitive in [0, 1]. Sensitivity is ensured by B'(x) =2 for x # 0.5, 1. Hence, B is
chaotic in [0, 1] according to Wiggins and to the experimentalists” definition (applied
to QC). It can be shown that the periodic orbits of B are dense in [0, 1]. Thus B is
chaotic in [0, 1] according to the definition of Devaney (applied to QC). B has a
periodic orbit of period 3 in [0, 1], but the Li—Yorke definition of chaos cannot be
applied to B, since we have seen that continuity is critical in the Li—Yorke case.

We close this survey with a remark regarding the possibility of numerically
investigating the chaotic behavior of a map. We feel that Martelli’s definition is
possibly most suitable for this purpose. The property L(x,) =X can be tested by
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covering the set X with small boxes (segments in R, squares in R2, cubes in R®...)
and by verifying that the orbit “visits” all of them. The instability of the orbit can be
tested with the method we used in Example 1.2 and in our second look at Example
3.4. As mentioned in the introduction, chaotic behavior is of great interest to many
disciplines. Proving it theoretically, however, is never an easy task, if at all possible.
Numerical tests are frequently the only ones available in practical applications and we
feel that the simpler they are, the greater their reliability will be.

Acknowledgment. We are much indebted to the referees for their useful comments and particularly for
the suggestion to incorporate the comparison table.
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A Lambda Slaughter

Mary had a little lamb- In matrix class it proved itself

Da curled and curved for show. To be a trusty pal, whose

And everywhere that lambda went, Assistance could be counted on
The math came out just so. For writing eigenvalues.

It followed her to calculus So keep an eye on Mary’s friend—
With multiplier rules, Its uses transcend measure.

Which show the way to meet constraints Beyond a doubt her lambda is

As in Lagrange’s school. A character to treasure.

—Dan KaLman
AMERICAN UNIVERSITY
Wasnincron, DC 20016
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covering the set X with small boxes (segments in R, squares in R2, cubes in R®...)
and by verifying that the orbit “visits” all of them. The instability of the orbit can be
tested with the method we used in Example 1.2 and in our second look at Example
3.4. As mentioned in the introduction, chaotic behavior is of great interest to many
disciplines. Proving it theoretically, however, is never an easy task, if at all possible.
Numerical tests are frequently the only ones available in practical applications and we
feel that the simpler they are, the greater their reliability will be.
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Archimedes’ Quadrature
of the Parabola Revisited

GORDON SWAIN

THOMAS DENCE
Ashland University
Ashland, OH 44805

Introduction In a letter (later titled Quadrature of the Parabola) to his friend
Dositheus, Archimedes wrote, “...it is shown here that every segment bounded by a
straight line and a section of a right-angled cone [a parabola] is four-thirds of the
triangle with the same base and equal height with the segment ...” [3, p. 233]. Thus
the area of a segment of a parabola cut by a chord can be determined from the area of
a certain inscribed triangle (Ficure 1). In this note we will extend the result of
Archimedes to a formula for the area of a parabolic segment from the area of any
inscribed triangle having the chord as one side. We will also give an algebraic
(coordinatized) proof of the result, which has the additional bonus of showing that the
area of the segment can be expressed as a geometric series. Finally, we will address
the question of whether geometric series appear in calculating the areas of segments
of other curves.

Archimedes’ result In Quadrature of the Parabola, Archimedes presents two
proofs of his result. In the first the segment is divided into wedges with a common
vertex at one end of the chord, and the formula is found through center of mass

\

FIGURE 1
Triangle inscribed in parabolic segment.

123
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arguments and increasing the number of wedges (see [1, p. 336-342]". The second,
which is of interest here, is purely geometric (see [1, p. 243—-245]>. The proof we
present here, while using somewhat modern notation, gives the flavor of his original
work. For example, AB refers both to the line segment and its length, and AABC is
both the triangle and its area.

THEOREM 1. (Archimedes) The area of a segment of a parabola is four-thirds the
area of the triangle which has the chord as one side and as the opposite vertex the
point on the parabola in the direction parallel to the axis from the midpoint of the
chord.

In Ficure 2, let M be the midpoint of the chord AB, and MC be parallel to the axis
of the parabola. A property of parabolas in general is that, if DE is parallel to AM,
then

=

FIGURE 2
Segment formed by chord AB.

AM?®  MC
DE® EC’
Archimedes refers the reader to the classic works on conics by Euclid and Aristaeus
for a derivation of this property [3, p. 235]. We note that AB and MC need not be
perpendicular.
Now, in Ficure 2, suppose further that P is the midpoint of AM, and PD is parallel
to the axis of the parabola.

MC _AM® _ (2:DE)
EC  DE? DE*
so MC =4-EC and ME = 3-EC. Thus MC = §-ME = % -PD.

"The Arab mathematician Thabit ibn Quira (836901 AD, Harran and Baghdad, [2]) gave a proof which,
while similar to Archimedes’, divided the segment into slices parallel to the chord, giving a Riemann
integral style derivation of the area (see [4]).

2Thabit’s grandson Ibrahim ibn Sinan (908-946 AD, Baghdad, [2]) provided a proof which was also
geometric in nature, but depended on the invariance of ratios of areas of plane figures under affine
transformations (see [4]).
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By similarity of triangles, MC = 2-PW. Thus PW = %-PD and PW = 2-WD. Then
AACP =2+ AADC, AACM =4+ AADC, and AACB = 8- AADC. The triangle simi-
larly inscribed in the segment determined by the chord CB also has an eighth of the
area AACB. In each of the four remaining parabolic segments we can inscribe a
triangle that has again an eighth of the area of the larger triangle with which it shares
a side. This process can be continued indefinitely, and in the limit fills the segment.

At this point Archimedes applied an indirect limiting process to approximate the
area of the original segment, showing that it can be neither greater than nor less than
3+ AACB. We arrive at the same conclusion by noting that the area of the segment is
the sum of the infinite sequence of the areas of all the inscribed triangles. Namely,

7}

91. 2 AACB= AACB- Y + = 4. aacB.
8 =473

n=0 )

Example. To gain a little more insight into the process described in the proof
above, consider the segment of the parabola y = x? cut by the chord from (—3,9) to
(5,25). We first inscribe a triangle such that the vertex opposite the chord lies at (1, D,
directly below the midpoint, (1, 17), of the chord (Ficure 3). The area of this triangle
will be (5 —(—=3))-(17 — 1) = 64, thus, by Theorem 1, the area of the segment
should be 5:64 =22 We could show this using a simple integration, but let us
continue inscribing triangles instead. We next inscribe triangles in the two parabolic
regions that remain, again with the opposite vertex below the midpoint of the chord
which defines each segment. The area of each of these is $-4-4 =8. At the next
stage, each of the four triangles will have area 1. We continue inscribing triangles

(271 triangles at the nth stage) to fill the parabolic segment, yielding a total area of
p)

1 1y 1y 1 256
644+2-84+4-148- 25+ - ——64(1+Z+(Z) +(Z) +~~-)=64'ﬁ*—§—

as we had expected.

FIGURE 3
Sequence of inscribed triangles.
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A generalization What happens if we take the parabolic segment in the example
above, but inscribe a triangle which has the opposite vertex at a different point on the
parabola? Archimedes’ formula does not apply but perhaps something similar occurs.

Example. Let us start with a triangle where the vertex is at (—1, 1), directly below
the point (—1,13) on the chord (Ficure 4). We note that the point (—1,13) divides
the chord into two parts according to the proportion %% The area of this triangle will
be £-(5 —(—3))-(13 — 1) = 48. We inscribe triangles in the remaining two segments,
again choosing the vertex to lie below the point on the corresponding chord that
divides it in the same proportions as before. Thus the new vertices are (—2.5,6.25)
and (.5, .25) respectively. The areas of these triangles will be % and & 1espectively.
The areas of the four triangles at the next stage are 5%, 25, 325, and ‘,156- respectively,

left to right. Continuing to inscribe triangles, the area of the original segment will be
3, 81 ) ( 3 81 , 81 2187)

Al‘ea=48+(z 556 T 356 T 956 T 956

147 7 7\
——48+21+F+ _48(1+E+(E) +)

FIGURE 4
Using proportion § : .

If we assume the series is geometric, then the sum is

1 16 256
48— =485 = =2
1-+ 9 3
as before. We will see later that this is indeed a geometric series. The above example
motivates a generalization of Theorem 1.

THEOREM 2. If in a parabolic segment a triangle is inscribed which has the chord as
one side and the opposite vertex below the point on the chord which divides it
according to the proportion r:1 — r, then the area of the parabolic segment is Ep—y
times the area of the inscribed triangle.
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VvV

I

M

\ /B
N

C
FIGURE 5
General case.

In Ficure 5, let V be the point which divides the chord AB according to the
proportion r:1 —r, and Q the point on the parabola directly below. We assume
r < 3; the proof is similar for r > 1 while Theorem 1 is when r= 3. Let M be the
midpoint of AB, MC parallel to VQ and the axis of the parabola, and QD parallel to
AB. Then, by the property of parabolas, MC/DC = AM?*/QD?*=AM?/VM?* or
DC/MC =VM?/AM?. By assumption, r = AV/AB = AV /2-AM. So 2r = AV /AM
and 1 —2r=VM /AM. Thus DC/MC =(1—2r)* and MD/MC=1—-(1—2r)*=
4r —4r2 Now

A2
AACB ~ MC ~Mc ~4r—4
Using Theorem 1, the area of the segment is
4 4 1 1
= AACB= 5 —+ AAQB= ——+ AAQB.
3 3 4r—4r2 Q 3r — 3r2 Q

Theorem 2 gives us a formula for the area of the segment in terms of the area of
any inscribed triangle which has the chord as a side.

An algebraic proof The following is a coordinatized version of Theorem 2. Though
the mathematics is not as clean as in Theorems 1 and 2, we have the surprise of seeing
the appearance of geometric series descriptions for the area of the parabolic segment.
By the width of a segment we mean the difference between the x-coordinates of the
endpoints of the chord which determines the segment.

THEOREM 3. Let f(x)=Ax>+ Bx+C be any quadratic function, w>0 and
0 <r <1 any real numbers. Then the area of a parabolic segment of f with width w is
AQ+R+R*+R*+ ) where A, = %r(l —r)w? and R=3r*>—3r+ 1.

Let a <b be any real numbers and let ¢ = a + (b — a) be the number between
them determined by the proportion r:1 —r. We calculate the area of the triangle T
(see Ficure 6) using the difference of the areas of the trapezoids below the sides of the
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a c b
FIGURE 6
Triangle and trapezoids.

triangle:

P [HOHIB) oy HO ) (g L)
VRS WA (S (G I (RS [ RS

=[2(b =) (1 =) f(a) + 1f(b) ~f()]].
Substituting for f and simplifying,

A a-nm-a 1)

In the two remaining segments we inscribe triangles with total area, using equation

D,

=B ne—ay + - -ey
-G -n -0l + S -nia-ne-or’
|A|

r(1=r)(b—a)’(3r2=3r+1).

If we define R=3r*—3r+1, then T'=T-R. Writing A, = |Alr(l —r)w? for the

area of the first triangle inscribed in the original parabolic segment of width w and A,
for the total area of the triangles added at the n stage, then clearly A, ,, =A, ‘R.
Adding up the areas of all the triangles gives us the area of the parabolic segment as
the geometric series

Area=A + A, +A;+ A+ = A(L+R+R*+R*+ --+)

as stated in the theorem.

We name the formula R=3r*>—3r+1 the Cummins function in honor of
Professor Emeritus Kenneth Cummins of Kent State University, whose presentation
of the first example above at an Ohio Section MAA meeting inspired the authors’
further interest in this problem.
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TABLE 1 Values of A,,; /A, for f(x) =13

i r= 1 25 5 .6
1 7955 5130 25 .2475
2 7840 4847 .25 .2596
3 7752 4687 25 2678
5 7627 4524 25 .2760
10 7462 .4403 25 2798
15 7387 4381 25 .2800
R= 7300 4375 25 .2800

COROLLARY 1. The area of any parabolic segment is +—.

Since any value of r in (0, 1) will yield a value of R in [.25, 1), the geometric series in
Theorem 3 will converge to the value given. With R = 3r% — 3r + 1, this is the same
result as Theorem 2.

In the proof of Theorem 3, equation (1) does not depend on the intersection points
of the chord with the parabola, but only on the width of the segment. This observation
leads to the following property:

COROLLARY 2. For a given parabola, any two segments of the same width will have
the same area.

We note that Archimedes was aware of this property, though in stating it, he
characterized the segments by their height at the midpoint of the chord [1, p. 79].

Other curves The curious reader might wonder if the methods used in this note
apply to finding areas of segments of other plane curves. The area of any convex
segment could be estimated by inscribing many triangles, but this would be practical
only if we encountered series whose sums we knew (ideally, geometric series). Sadly,
this method does not yield geometric series in general. It seems that this phenomenon
is unique to quadratic functions. For the segment of the cubic f(x)=x> over the
interval [1,4], Table 1 gives values of the ratio A,,,/A; (using notation from the
proof of Theorem 3) for various values of r, along with the values of the Cummins
function. The exact values when r = .5 is an exceptional case, though it does occur for
any cubic over any interval (the proof is similar to that of Theorem 3). It appears that
for other values of r the ratios converge to the value of the Cummins function as i
increases. Data for higher degree polynomials also appear to exhibit this trend.

We sketch an argument for why this convergence occurs. Consider a convex
segment of the graph of a polynomial f(x) of degree n. Suppose we are at the i stage
of inscribing triangles into the segment, and focus on one of the triangles, say one that
falls over the interval [a, b]. Expanding f as a Taylor series about a, and using the
notation of Section 4, the area of this triangle is

1 a ®(q
r=g3r-00-0 L 4 g -0 § L G- o0
The area of the two triangles that are inscribed adjacent to it at the i + 1 stage is

—La-nee - -l
I\ a
+1(b-a)' Zf o (1) (b—a)*?
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where g,(r) are polynomial functions of r only. The ratio of these areas is
T _ f"(a)r(1=r)(3r?=3r+1)+(b—a)M
T f"(a)yr(1=r)+(b—-a)N

where M and N are bounded terms (involving derivatives of f, polynomials in r, and
powers of (b — a)). As long as f” is not zero anywhere on the segment, we can see
that the ratio converges to R=3r>—3r+1 as b —a goes to zero. As we go from
stage to stage, the width of the triangles does go to zero at least as fast as a geometric
series with ratio max{r,1 —r}. The same will be true when we look at the ratio
A, /A, of the total areas at each stage. The curious reader may want to show that
convergence will also occur in classes of functions other than polynomials.

Acknowledgment. The authors would like to thank Glen Van Brummelen for the idea of using Taylor
series that made the convergence argument possible, and for many other helpful comments on this paper.
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Proof Without Words: Adding Like Sines

Bsin ¢
A + Bcos¢
Asinx + Bsin(x+ ¢) =Rysin(x+0)

Ry=yA>+B>+2 ABcos ¢  tan =

B
d>=77/2="tan0=z

Asin x + Bcos x = VA® + B? sin(x + 6)

Bsin(x + @)

Asin x

—Rick MABRY

Pavur DEIERMANN
LouisiaNa State UNIVERSITY
SureveporT, LA 71115
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Perfectly Odd Cubes

STEVEN KAHAN
Queens College
Flushing, NY 11367-1597

A perfect number is one that is equal to the sum of its proper divisors, with 6 and 28
being the two smallest examples. More than two thousand years ago, Euclid stated
and proved, as Proposition 36 of Book IX of the Elements:

If M, =27 —1is prime, then E, =27~'(27 — 1) is perfect.

Primes of the form M, are known as Mersenne primes, to honor the French priest
who conjectured their primality in 1644. Mersenne primes occur only when p itself is
prime, although not every prime p leads to a Mersenne prime. At present, there are
36 known Mersenne primes; the largest, discovered in August 1997, has 895,932
digits.

In the eighteenth century, the prolific Swiss mathematician Leonhard Euler proved
that every even perfect number must be generated by a Mersenne prime, as
described in Euclid’s Proposition 36. The following result describes a somewhat
surprising characteristic of all even perfect numbers greater than 6:

THEOREM. Let p be an odd prime that generates the even perfect number E, =
277127 —1). Then E,, is expressible as the sum of the cubes of the first n consecutive
odd integers, where n = 2(r~D/2,

For example, if p =7, then E,=8128, and we can write 8128 = 1° + 3% + 5° +
7°+ 9%+ 11° + 13° + 15°. More remarkable is the fact that the largest perfect
number now known, which has 1,791,864 digits, is the sum of the cubes of the first
QU880 onsecutive odd integers. (Skeptical readers are invited to verify this auda-
cious claim.)

Proof. Standard summation formulas verify that
n
Y (26— 1)’ =n?(2n> - 1).
1
With n =277Y/2 the right-hand side of this equation becomes

(z(p—l)/2)2(2(2(7>—1)/2)2 _ 1) =2r7l(g(2r ) 1) =271 (2P — 1)

or EP, as claimed.

The Square Root of Two is Irrational: Proof by Poem

Double a square is never a square, and here is the reason why:

If m-squared were equal to two n-squared, then to their prime factors we’d fly.
But the decomposition that lies on the left has all of its exponents even,

But the power of two on the right must be odd: so one of the twos is “bereaven.”

—MAURICE MACHOVER
St. Jonun's UNIVERSITY
Jamarca, NY 11439
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Small Denominators: No Small Problem

SCOTT J. BESLIN
DOUGLAS J. BANEY

VALERIO DE ANGELIS

Nicholls State University
Thibodaux, LA 70310

I. Introduction This article is primarily concerned with the following problem.

Let a and b be real numbers in the unit interval, with a < b. Define
F(a,b) to be the reduced fraction with smallest denominator in the
open interval (a,b). Find a formula or algorithm for computing

F(a,b).

(P)

It is always assumed that when either @ or b is a fraction, it is in reduced form. The
special case a =37 and b =+ appeared as a problem in [2]. As often happens in
mathematics, the simplicity with which the problem is stated belies the complexity of
solving it.

We will observe interesting connections among the solution of (P), Farey se-
quences, and continued fractions. Many of these connections lead to good classroom
problems in elementary number theory and computer science. Diligent readers will
uncover some unanswered problems of their own.

Is F(a,b) a function? The existence of a minimal denominator is ensured by the
Well-Ordering Property of the natural numbers. We establish uniqueness of F(a, b)
in the following proposition.

PROPOSITION 1. Suppose n is the minimal denominator occurring in the interval
m

(a,b), and suppose % is in (a,b). Then % is the only such fraction.

n

Proof. Suppose the conclusion fails. Then, without loss of generality, m: ! is also in

(a,b). Now (m + 1) <n so that —(m + 1) > —n and hence —(m + 1) + (m + Dn >

—n+(m+ Dn, or (m+ 1)(n— 1) > nm. Thus "':1 > 2. So e L >
and — is in (@, b), which contradicts the minimality of n. e

(There is of course no fraction with maximum denominator in (a, b).)
We observe by inspection that

1 1 1 1 1 1 1
F(O’l)=§>F(O,§)=g,F(O>§)=Z,--.,F(O,5)=m.

These examples are special cases of the following more general result. The notation
|y denotes the greatest integer less than or equal to .

PROPOSITION 2. If 0 <b <1, then

F(0,b) = Wl-i-l
2
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For example,

1
and F(O,l)=; =%

1
F(0,02191) = == )= e

10.2191J +1

Proposition 2 can be proved directly. We will obtain it as a corollary to a more
general theorem at the end of this article.

One method of computing F(a, b) is through an exhaustive search, which “tries”
4 %, %, %, %, ";, ete., until F(a, b) is found. Such an algorithm becomes computation-

ally impractical as the denominator of F(a, b) gets larger.

II. Farey sequences and continued fractions Many sources, including [1] and
[3], treat Farey sequences and continued fractions. We summarize the main results
below.

Farey Sequences. The Farey sequence of order n, F,, is the list of reduced fractions
in the interval [0, 1], arranged in ascending order, whose denominators are less than or
equal to n. For example, the Farey sequence of order 4 is

F -0 1 1 1 2 3 1
47 1>4>3>2>3>4> 1"

Reduced fractions % and < 7 in the unit interval, with i < ;> are adjacent Farey

fractions if .they occur in consecutive order in some Farey sequence The interval

[F % is then called a Farey intervall.

For example, 3 and % are adjacent Farey fractions in F,, and [3,3] is a Farey
interval—even though they are no longer adjacent in Fj.
It can be shown (usually by induction) that ; and § are adjacent if and only if

lad — be| = 1; that is, if the matrix [ c] is a unimodular transformation on R2. The

b d
mediant of a Farey pair 4<% is defined to be the fraction 4%, We write + & &
b~ d b+d b d
a+c

= 7 to indicate Farey addition as opposed to ordinary real-number addition. The

following statements about the mediant of a Farey pair are true. Items (1), (2), (3) are
routine exercises; item (4) requires some effort.

(1) The mediant is in reduced form;
@) §<is <5

b+d d’
3) [l’)—’, % and [Z:f[ , f—l] are Farey intervals;

(4) Among all fractions Il/ with I’)—'< % < %, the mediant is the unique one with
smallest denominator.

These facts yield a recursive procedure for generating F,,, from F,: insert the
mediant into F,, if its denominator is less than or equal to n + 1. For example, F; is
obtained from F, as follows.

() The first Farey pair in F, is %, 1. Farey add: ¥ @ {=1+. Because § has
denominator <5, £ is in Fj.
(ii) The next Farey pair is =, +. Farey add: + @ + = 2. Because
! y P 13 y 19377
>5, 7 is not in F.
(iii) Repeat this procedure for each successive pair in F, to obtain F:
P P P 4 5

01 1 12132341
T 1°5°4°3°5°2°5°3°'4°5° 1"

w

2
7

has denominator
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(In [5], the author discusses the sequences derived by including all mediants in the
generating process, and obtains what he calls modified Farey sequences.)
Statement (4) above is a partial answer to problem (P). For example, the fact that

5 7
Two questions remain:

det [2 3] = —1, implies that 2 and 2 are a Farey pair. Hence F(3,2) =@ 2=3

1. What if the endpoints of the interval are not a Farey pair?
2. What if either endpoint is irrational?

One computational solution to both questions is to use a “Farey process” to trap the
given interval between two adjacent Farey fractions. The recursion resembles the
bisection method; it proceeds as follows. Given 0 <a <b < 1:

() Start with 2, 1.
(ii) Farey add to obtain the mediant.
(iii) If the mediant is in the interval, then F(a, b) = mediant; otherwise, repeat (ii)
and (iii) for a new Farey pair which includes the mediant.

Exl'ample. Find F ( ‘/2_ 100) The following sequence of Farey additions yields the
result.

0 1 1 V2 1 1 2 V2
191 3<% 3®971=3<7%
P S 2,3_5, T
3 1 4 100 3 4 7 100
2 5 7 42 7 5 12 92
3977102 07 M7
Since—éB——()—4 (‘/2— 17010) we have F(i;—— %6)=%.

It is plausible, but not entirely obvious, that the process described above must
terminate. See [4] for details.

In Section III we will give a method for obtaining the last, “critical” Farey interval

—(32, %) in the above example—without using the recursive Farey process.

Continued Fractions. (See [1], [3], and [4] for further details on continued frac-

tions.)
A simple continued fraction [ay, a;, a,, ...] is an expression of the form

aGy————1 >
a+ ——
ag t —

where a, is an integer and «; is a positive integer for i>0. If the expression
terminates, the continued fraction is said to be finite and represents a rational
number. Otherwise, the continued fraction is infinite, and converges to an irrational
number.

The successive rational numbers [ay]=a,, [aq, a;]1=a, + HL, lay, ay, a3l =
etc., are called the convergents to (or of) the continued fraction. We

Pn

denote the convergent [a,, a;,...,a,] by c
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Every rational number can be expressed as a continued fraction in two ways, for

lag,ar,...,a,_1,a,]1=lay,ay,ay,...,a,_,,a, —1,11if a, > 1. For example,
[T R S
4 1 1
1+ = 1+
3 1
2+ 1

Observe that 0 <[a,, @y, a,,...,a,] <1if and only if a,=0.
The successive convergents £: can be generated recursively by the following
Gk
scheme:
Po=ag; Go=1;
pr=aa,t+1;q,=a.
For k=2, pp=aypiy +pre and qp = a1 qp 1 + s
If we begin with a real number r(, its continued fraction expansion may be
obtained by the following scheme.
() Let ay=1ryl.
(i) Let r, = ﬁ and set a, =|r,].

1
rp—ag’
(iv) If r, is rational, then r; is an integer for some k, and the process terminates.

(iii) Repeat inductively, so that a;, =|r;] and ri ., =

Example. Let ry,= +=. Then

A oL 1
I U0 Rl TP
11
Uy, oL _4
@ 1 _>72_£_2_3>
4
z-1
3
az=13]=3.

Hence +=1[0,2,1,3], and the convergents to + are [0]=0; [0,2] = 3; [0,2,1] = %;
and ++.
We will use the following two standard theorems (see [3]).

THEOREM 1. [ag,ay,...,a,]1<lay,ay,...,a,, a,,. ]if and only if n is even.

n?
THEOREM 2. The convergents c; = % to ry satisfy ¢y <cy, <cy < v Krg< e <
¢5 <c¢y <c,. In other words, {c,} is increasing, {cy;,.,} is decreasing, and cyp <cy;4

forall j, k.

Theorem 2 implies the well-known result that when r is irrational, its convergents
form two monotone sequences of rational numbers, each converging to r.
The following two theorems link Farey fractions with continued fractions.

THEOREM 3. (See, for example, [1] and [2]) Two successive convergents
lag, ar,...,a,_ 1 and [ay, ay, ..., a,_,, a,] are adjacent Farey fractions.
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, — Pu " — —
Pl"OOf [(LO> Ay, .- (l”] - m> where Pn =0y Pu-1 +Pn'2 and Gn = 0pq,-1 +qn—2'
Thus D(n) =|"" P'| = - = (a + )g -
Gy G-t Paln-1 Po-19n n Pon—1 Pun-2/Gn-1

pn—l((lnqn—l + qn—z) = pn—2qn—1 - pn—lqn~2 = _(pn—lqu—Z'Plz—qu1—1)=

~D(n—1). Since D(1)= ’”l“;;* Lo
1

D(n)= +1if nisodd and D(n) = —1if n is even. ]

= +1, an inductive argument shows that

The following result is now readily proved. Details are left to the reader.

THEOREM 4. The mediant of two successive convergents [ay, a,...,a,_;] and
lag, ay,....a,_y,a,)is [ag, ay,...,a,_,,a,,1]

n?

The proof follows from the identity

P +pn—1 — (1 +an)Pn—1 +pn—2
G, +q”—1 (]' +an)qn—l +qn—2 .

IIL Solution to problem (P) We begin by establishing a result about continued
fractions.

PrROPOSITION 3. If n is even, lay, ay,...,a,_y,a,1<lay, ay,...,a,_1,b,] if and
only if a, <b,; if nis odd, [ay, ay,...,a,_1,a,1<lay,a,...,a,_,,b,]if and only if
a,>b,.

n?

The proposition (and Theorem 1 as well) may be proved inductively by observing
the following: Consider the expression a, + ﬂi] Increasing the denominator, either by

adding L to a, or by replacing a, with a larger integer b,, makes the last term
& o 1 y 1ep g 4 g g 1

smaller, and hence the original expression smaller. Thus [a,, a;]> [ay, a;, a,] and
lag.a,1>[a,, b,]if a; <b,. Likewise,

1
[ag,a,,a,]=a,+ [ o] <a0+m—[do,al,a2,(13] and
[a aao]=a+~—l—-<a+—l———=[a ay, by ) if a, <b,. O
0> 01,0 ot Tar an] ot a5yl 0> 015D 2 <Dy

We are now ready to state our main result.

Let 0 < a <b < 1. Suppose the continued fraction convergents of @ and b are listed
up to the terms where they first differ. Suppose the convergents of a first differ from
the convergents of b at the kth entry. If k is even, let f, be the last listed convergent
of a, and let f, be the next-to-last convergent to a. If k is odd, let f, be the last
listed convergent of b, and let f; be the next-to-last listed convergent of b. Recall
from Theorem 2 that f, <a and b <f,. Theorem 3 ensures that f; and f, are
adjacent Farey fractions. Thus the interval (a, b) is “trapped” by the Farey interval

(fi f2)-

THEOREM 5. F(a, b) is the mediant f, ® f, of f; and f, if f, ® f, is not equal to a or
b. Otherwise, an additional Farey addition is needed to obtain F(a,b).

Proof. The proof uses Theorem 1, Theorem 2, Theorem 4, and Proposition 3. For
example, suppose the lists of convergents first differ at entry n + 1, an even number.
Then f, =[ay, ay,...,a,] and f, =[a,y, a,,...,a,,s], where f| is a common conver-
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gent to the endpoints ¢ and b, and f, is a convergent to a. Suppose the convergent
to b following f, is [ag,a,,...,a,, k]. By Theorem 2, f; <f,, so that s <k from
Theorem 1. Now f} ® f, = [ao, a,...,a,,s, 1] from Theorem 4. Observe that f, ®f,
can also be written [ag, a,,...,a,,s + 1]. Using Theorem 2 again we obtain

b>[ao,al,...,a”,k] [ag,ay,....a,,s+1]=f &f,.

Let[ay,ay,...a,,s, d] be the convergent to a following f,. Since n is odd and d > 1,
Proposition 3 implies that

a<lag,ay,....a,,s,d] <[ag,a,,....a s, 1]=f &f,.

Thus a <f, ®f, <b. Now f, @f, is in the closed interval [a, b]; moreover, [a, b] C
(f1, f2), and F(f, f,) =f, @f5, so Fla,b)=f, ®f, unless f, @ f,=a or b. In this

case, at least one more Farey addition is necessary. (If this happens, at least one of a

and b must be rational.) O
Example. Let a=0.56 =3 and b =0.62 = 2. Find F(a, b).

(i) Write the continued fraction convergents of @ and b up to the point where they

first differ.

Level 0 a: [0]1=0 b:[0]=0
1 [0,1]1=1 [0,1]1=1
2 [0,1,11= 3 [0,1,11=3
3 [0,1,1,3]=% [0,1,1,1]=2

(ii) The convergents fust dlffer on level 3, so f; =5 and f, = 2.
(iii) Compute f, ®f,: 3 ® 3= 2.
(iv) Since f, ®f, is not an endpomt F(a,b)=f &f,.

We conclude that F(0.56,0.62) = ¢
Example. a = +; b = . Find F(a b).

Level 0 a: [0]= % b:[0] = %
1 [0,4] = + [0,3]= 1
Thus f, =2, f, = %, and f, ® f, = § = a. So another Farey addition gives  ® =2 =

F(a,b).
COROLLARY 1. [See Proposition 2, Section 1.] If 0 <b <1, then F(0,b) =

1
[%J +1

Proof. 0=[0] and b = [O, [%J,] so fi="%and f,= [ ,[ ” The con-
clusion follows after Farey adding. l J

We observe that if @ and b are reduced fractions and F(a, b) =a & b, then a and
b need not be adjacent Farey fractions The example @ = 3 and b = 2} computed
3 14 31
above shows that F(q,b)=2=2 @& & but ‘?5 50‘ —~75.
The reader is now invited to solve the case at the beginning of this article: What is
F(33, %P
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Math Bite: On n'/">(n+ D/"*D n>3

Let a,=n'", n=1,2,... . The familiar fact
I:a,>a,,,,n=3
is usually proved by proving more (see, e.g., [1]):
(1+1/n)" <3.

But I, is immediate from the inequality

a n(n+1) a. n(n-1)
]n: bnz( . ) > > 1) =bn—1’n22’

(OS] a,

which simply asserts that

2n >an+l n—=1_ 2 1

2
n-=a, n+1dy—1 =N

That b, > 1 (n > 3), as required, follows from J, and
by, <1<b,,

which, thanks to a, = a,, is implicit in [,: 0 <b, <b(=by?).

REFERENCE

1. G. H. Hardy, A Course of Pure Mathematics, 10th Ed., Cambridge, Cambridge, UK 1952,
pp. 141-143.

—T. S. NANJUNDIAH
“PRASHANTHI”

180, I Cross

GANGOTRI LAYOUT-I STAGE
MYSORE-570 009

INDIA
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The Randomness of Remainders

D. A. MORAN

B. M. STEWART!'

Michigan State University
East Lansing, MI 48824

The Monte Carlo simulation technique, used for statistical predictions of numerical
data in complex models of scientific situations, depends on a constant supply of a long
stream of random numbers. Highly sophisticated computer programs have been
devised to generate such a supply and (sometimes after long usage) the numbers
generated by the program often prove to be not so random after all. For example, in
an article in Physics Review Letters a few years ago (December 7, 1992), it was
reported that five of the most widely-used random number generators produced
errors when applied to a model of the behavior of atoms in a magnetic crystal.

Some random number generators contain a process wherein a stream of digits is
added together, then divided into some large number, and the remainder used to
compute further digits in the next step of the process. A little experimentation might
well convince the casual observer of the unpredictability (and hence, presumably, the
randomness) of this sort of calculation. For example, if 1,000,001 is divided by the
integers 1234, 1235, ..., 1250, the following remainders result: 461, 886, 77, 505, 935,
128, 561, 996, 191, 629, 1069, 266, 709, 1159, 353, 801 and 1. These numbers appear
to be spread quite uniformly over the interval [0, 1250], even though the divisors are
so regular. A few computations such as this might lead the experimenter astray.

Bad guess. A pretty good way to find k random integers in the interval [0, n] might
be to divide some large number by the integers n —k, n—k+1, n—k+2,....n
and look at the remainders.

In fact this guess can be spectacularly bad, as illustrated in the following table,
which gives the remainder when 2'%' is divided by 2** + k:

k Remainder k Remainder

1 8,589,934, 592 = 23 5 8,589,934,532
2 17,179,896,182 = 2% — 2

3 8,589,934,580 99 8,589,886,082
4 17,179,869,156 100 17,179,369,286

Indeed, the table could be carried more than a thousand entries further before the
remainders lost their “look-alike” quality. Hardly a random set of numbers!

The unexpected regularity of these data is hinted at by the entries in the first two
rows of the table; the dividend, divisors, and remainders are all near a power of 2. As
it turns out, the number 2 is not important in this regard; any larger integer M will
play the same role, if the exponents are chosen properly.

General result. Let M be an integer greater than 1. When M®'~? is divided by
integers in the vicinity of M“ (a > b), the remainders in the division are grouped
together in clusters near numbers whose locations are calculable in advance. The

"Professor Stewart died on April 15, 1994.
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number of clusters is exactly the number of quadratic residues mod M b (except in a
few singular cases).

(The nonnegative number ¢ (¢ <n) is said to be a quadratic residue mod n if the
congruence x?2=¢ mod n has a solution. For example 0,1,4,5,6,9 are the quadratic
residues mod 10.) In the above example, a =34, b =1 and 3a — b = 101, there are
only two quadratic residues mod 2', so the remainders are clustered about two
numbers (2% and 2**). If we were to examine the division of 2% by integers in the
vicinity of 9% (so that now a =35, b =4), we would obtain four classes of look-
alike remainders corresponding to the four distinct quadratic residues modulo 24
(i.e., mod 16).

The result can be derived by carefully scrutinizing the size of the remainder R that
results when M3~ is divided by a number of the form M + k, where 0 < k3 <M.
By long division, we find that:

M = (M +k) (M — kM +k2) —k?, (1)

Now suppose that k2=t (mod M?”), where 0 <t <M?", so that ¢ is a quadratic
residue mod M. (We'll consider the case t = 0 later.) Then k2 —¢ =uM?" for some
1, 0 <u <M". Now rewrite (1) in the form

M3 =(M"+k)(M>**—kM"+k*>—t) —k>+ (M +k)t.
Multiplying each side by M -b yields
M3h = (M*+k)(M>*™" —kM“~" +u) +R,

where R= (M + kM~ —k*M~". We wish to show that 0 <R <M“ + k. First,
t<MP” so tM7" <1, and R<M®+k. Now k> <M" so k?M~" <M*7". Since
t>0,ie. t>1, we have

(M + k)M > (M +k)M > >MM> =M*~".
Thus
(M + k)M~ —k*M™" >M*~" —M*~" =0,

The dominant term in the remainder R is (M¢+k)tM ", because a > b and
k® < M“. If the values of k are very small compared to M*, the clustering of the
resulting remainders is very dramatic, as in the example.

If we examine the dominant term (M®+ k)tM~" found above, we note that
different values of ¢ (i.e., different quadratic residues mod M by will give different
clusterings of remainders, again because a > b. The clusters will be in the vicinity of
the numbers tM“~”, one cluster for each quadratic residue ¢ (mod M by, > 0.

It remains to examine what happens if k2=0 (mod MP"). In this case, k2 =uM?
for some u, 0 <u < M", and we now rewrite (1) in the form

M3 =(M"+k)(M> —kM“+k*=M") = k> + (M +k)M".
Now, multiplying each side by M ™" yields
M3 = (M +k)(M* ™" —kM*" + (u—1)) +R,

where R=(M*+k) — k>.
In this case, it is clear that R<M?+k and R >0 because k> <M so the
remainders cluster around M“.
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This completes the proof that the remainder R is dominated by one of the numbers
M® or tM°b, resulting in “look-alike” remainders. It should be noted that the
clusters of remainders about M (for ¢ = 0) and M~ (for ¢ = 1) are distinct because
a>b, and that k < M?, for otherwise it might happen that tM @=b =~ M? and the
clusters for + =0 and ¢ = 1 would coalesce.

The above analysis shows that small perturbations in a divisor can sometimes cause
quite predictable changes in the remainder, so it is not always a good idea to depend
on long division to try to produce randomness. Incidentally, this idea might be of
some use in identifying intervals of integers that contain no divisors of Mersenne
numbers, Fermat numbers, and other numbers near large powers of small integers.

Acknowledgment. I thank the referee for helpful suggestions.

Proof Without Words: Area Under a Polygonal Arch

The area under the polygonal arch generated by a regular polygon rolling along a
straight line is three times the area of the polygon.

CoROLLARY. The area under one arch of a cycloid is three times the area of the
generating circle.
—PaiLie R. MaLLINSON

PuiLLips EXETER ACADEMY
Exerer, NH 03833-2460
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GEORGE T. GILBERT, Editor

Texas Christian University

ZE-LI DOU, KEN RICHARDSON, and SUSAN G. STAPLES, Assistant Editors

Texas Christian University

Proposals

To be considered for publication, solutions
should be received by September 1, 1998.

1544. Proposed by 1996 MathCamp Students, University of Washington.

Let a, be a positive integer and let

a,+1 if q; is odd,

Ay = P
kel a,/2 if a is even.

Find a nonrecursive expression in terms of @, for the smallest positive integer k such
that a;, = 1.

1545. Proposed by Erwin Just, Professor Emeritus, Bronx Community College,
Bronx, New York.

Let k be a positive integer. Prove that there exists an infinite, monotone increasing
sequence of integers (a,) such that a, divides a2, +k and a,,, divides a2 +k for
all n > 1.

1546. Proposed by Benjamin G. Klein, Davidson College, Davidson, North Car-
olina, and Arthur L. Holshouser, Charlotte, North Carolina.

Given y>1, let P be the set of all real polynomials p(x) with nonnegative
coefficients that satisfy p(1) =1 and p(3) = y. Prove there exists p,(x) € P such that

@ {p@): p(x) € P} =(1, py(2)k
(i) if p(x) € P and p(2) = py(2), then p(x) =p,(x).

We invite readers to submit problems believed to be new and appealing to students and teachers of
advanced undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any
bibliographical information that will assist the editors and referees. A problem submitted as a Quickie
should have an unexpected, succinct solution.

Solutions should be written in a style appropriate for this MAGAZINE. Each solution should begin on a
separate sheet containing the solver’s name and full address.

Solutions and new proposals should be mailed to George T. Gilbert, Problems Editor, Department of
Mathematics, Box 298900, Texas Christian University, Fort Worth, TX 76129, or mailed electronically
(ideally as a LATEX file) to g.gilbert@tcu.edu. Readers who use e-mail should also provide an
e-mail address.
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1547. Proposed by Homer White, Georgetown College, Georgetown, Kentucky, and
Robert Bailey, Lexington, Kentucky.

Consider the function

3n . .
-5 if n is even,
f(n) =
3n+1
”2 if n is odd.

Let N> 1 be a positive integer, and define «,(i) to be the remainder when the ith
iterate of f, f@(n), is divided by N. Prove that, for any n>1, the sequence
(a,(i)), , is not periodic.

1548. Proposed by Ken Richardson, Texas Christian University, Fort Worth, Texas.

Let D be a convex domain in the plane, and suppose that its boundary curve « is
piecewise C?. Imagine that a fence is built along the boundary, and that a rope of
length L is attached to the outside of the fence at a point along the boundary. By
pulling on the rope so that it is taut but constrained to remain outside D, a new curve
B is traced out by the end of the rope. Assuming that L is at least half of the length of
the curve a, is it true that the curve 8 determines the curve a?

Quickies
Answers to the Quickies are on page 150.

Q877. Proposed by Eugene W. Sard, Huntington, New York.

An American League baseball player noticed that after he got his 50th career hit
against the Yankees, his career batting average rose by exactly .0005. What was his
most likely batting average before this last hit?

(Batting average is the number of hits divided by the number of official at bats,
which include hits.)

Q878. Proposed by Charles Vanden Eynden, Illinois State University, Normal,
Hlinois.

Let ¢(n) be the number of ways of tiling a 2" X 2" checkerboard with 1 X 2 tiles.
Evaluate

lim

Inlnc(n)
n—ow n '
Q879. Proposed by Jan Mycielski, University of Colorado at Boulder, Boulder,
Colorado.

A sphere S (in R3) intersects a sphere B of radius 1. Furthermore, S passes
through the center of B. Show that the surface area of that part of S lying inside B is
independent of the radius of S.
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Solutions

Symmetry of a Doubly-Indexed Sequence April 1997
1519. Proposed by Sam Northshield, SUNY, Plattsburgh, New York.
Given a sequence (a,),, , let Ay; =1 and

Aij = l_[ (1 +jay)

1<k<i

for positive i and nonnegative j. What sequences (a,) satisfy A;=A for all
nonnegative i and j?

Solution by Howard Morris, Germantown, Tennessee.
The sequence may start with any a, that is not the reciprocal of a negative integer.
The other terms are given by

a

&= 1+ (n—1)a;"

From
]' '|‘7’L£11 =A1n =Anl =An—1,1(1 + an) =A1,n—1(]' +(ln) = (]' + (n - 1)(11)(1 + [l”),

it follows that a, is not the reciprocal of a negative integer and that

_ |
= 1+(n—1)a,’
To prove that such a sequence implies A;;=A, there is no loss of generality in
assuming ¢ > j. Then
I
. 1+(i+k—1)a
Ll (jrk—1)a, k=1-i+j ( Ja
Avs =g,
Tk=1 @
k]j[l 1+ (k=1)q

j 0
[T1+(G+k=1)a, [I 1+(@(+k-1)a
k=1

k=1-i+j

ﬁl+(k—1)a1 ﬁ 1+(k—1)(ll

k=1 k=j+1

1+ (it+tk—1)g
_,L—[l 1+ (k—1)e 7

as required.

Also solved by Vic Abad, Cai Bo (Australia), Sabin Cautis (Canada), John Christopher, Daniele Donini
(Italy), Thomas Jager, Ioana Mihaila, Can A. Minh (graduate student), R. P. Sealy (Canada), Yongzhi
Yang, and the proposer. There were two incomplete solutions.
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Loci for Symmetric Conditions in a Triangle April 1997
1520. Proposed by Victor Kutsenok, St. Francis College, Fort Wayne, Indiana.

(a) Given points A and B in the plane, describe the set of points C in the plane
such that A, B, and C form a triangle satisfying am, = bm,,, where a = BC, b = AC,
and m, and m, are the lengths of the medians from A and B respectively;

(b) Given points A and B in the plane, describe the set of points C in the plane
such that A, B, and C form a triangle satisfying al, = bl;,, where [, and [, are the
lengths of the angle bisectors from A and B respectively.

I. Solution by Paul Yiu, Florida Atlantic University, Boca Raton, Florida.

Clearly, in both cases, the point C can be chosen on the perpendicular bisector of
the segment AB. Thus, we shall henceforth assume a # b and let ¢ = AB.

(a) The medians m, and m,, satisfy

m%=%(2b2+2cg—a2) and m%=i(2a2+202—b2).

From the relation am, =bm,,, we obtain
(a* —b*)(a*+b*—2c%) =0.

Since a # b, we must have a® + b* = 2¢?. From this, m?> = 3¢?/4, and C lies on the
circle with center at the midpoint of AB and radius AB- V3/2.

(b) Let @, B, and vy denote the measures of the angles A, B, and C, respectively.
The angle bisectors have lengths given by

2b 2
la=ﬁcos% and [, = a-(ifcc cosg.

Now, al, = bl,, if and only if

o™

o
COoS & COoSs
2 —_—

b+c c+a’

By the law of sines, this equation is equivalent to

a B
cos 5 cos 3

sin B+siny  siny-+sina’

We obtain
& a
cos 5 _ cos 5 _ 1
sin B+ sin'y 251113"‘70053_7 ZCOSB_V
2 2 2
for the left-hand side, and similarly 1 /(2 cos 7; 2) on the right-hand side. It follows
that
B-vy_ Y-«
cos —5— =cos —5—,

and B—y= +(y—a). Since a # b, we must choose the positive sign, and obtain
a+ B=2y. This means y=60°, and C lies on the major arc of the circumcircle of
one of the two equilateral triangles on AB.
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II. Solution by David Zhu, Jet Propulsion Laboratory, Pasadena, California.
(a) Choose a coordinate system so that A=(—c/2,0) and B=(c/2,0). If C=

(x, y),
2 _ ‘_22 2
a—(,x 2) +y”,
2 _ .. 27 2
b—(x+2) +y°,
9 [x+c/2 22 A%
mi= (=52 g) (4],
92
Y

Then a*m2 =b?mj, can be simplified to

x((x2 +y*) - %cz) =0.

Thus the set of points C is on the perpendicular bisector of AB and the circle
centered at the midpoint of AB with radius V3 /2 times the length of AB.
(b) Let ZA=a, £ B=p, and AB = c. Using the law of sines,

__csina
sin(a+ B)’

_ csin B
sin(a+ )’

I — csin B

¢ sin(a/2+B)°

= csin &

b sin(e+ B/2)

Then al, = bl,, is reduced to

sin(a+ g) =sin(% +B),

hence

2
a=Bora+B=Tﬂ.

Thus, the set of points C is on the perpendicular bisector of AB and the 60° arcs
about chord AB.

Also solved by Sabin Cautis (Canada), Daniele Donini (Italy), Ragnar Dybvik (Norway), Milton P.
Eisner (part (a)), H. Guggenheimer, Howard Cary Morris, Volkhard Schindler (Germany), Michael
Vowe (Switzerland), and the proposer. There was one incorrect solution.

A Difference of Powers Functional Equation April 1997

1521. Proposed by Wu Wei Chao, He Nan Normal University, Xin Xiang City, He
Nan Province, China.

Let a function f: R — R satisfy

=y = (=[£G 41 () f )+ S ()"
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Prove that f(rx) = rf(x) for all rational r and all real x.

Solution by John Baker and John Lawrence, University of Waterloo, Waterloo,
Ontario, Canada.

We will show that the only functions satisfying the given functional equation are
flx)=x, f(x)=0 for n>2, f(x)= —x for n even, and f(x)=cx for n=2. It is
easy to verify that such functions satisfy the given.

To show there are no other functions, begin by setting x =y to see that f(0) =0.
Next, set iy = 0 to obtain f(x") =xf(x)""" and x = 0 to obtain f(—y") = —yf(y)"~*.
These combine to yield that f(—x) = —f(x) for all x € R.

Assume first that n is even. Then

0=f(x"—y") =f(x" = (=y)")
=205/ (y) =g D[ 45 ()T )+ 7))

Note that each term in the square brackets is an even power. If there exists a such
that f(a) # 0, it follows that xf(a) —af(x) =0, or f(x) = (f(a)/a)x. From f(1") =
L-A(D)"!, we see that f(x) =x or f(x) = —x, unless n = 2, in which case there is no
restriction on f(a)/a.

Now assume that n is odd. Let F={a €R: f(ax)=af(x) for all x €R}. We
want to show that Q CF and ultimately that F=R. Clearly, 0, + 1 €F and F is

closed under multiplication and reciprocation. It remains to show that F is closed
under addition. We show first that F is closed under taking nth roots. For a € F,

n—1

axf (x)"™ = af (x") = fax") =f((a"%)") = &/ "af (o 2) "

Noting that f(x") =xf(x)" ! also implies f(x) > 0 for x >0 and f(x) <0 for x <0,
it follows that f(a/"x) = a'/"f(x). Setting a = a'/" and b = B/, the closure of F
under addition now follows from

f((atB)x")
=f((ax)" = (=bx)")
= (b)) = fax)" " fbe) + = f(ax) f(b) " + (b))
=(a+b)x(a" P =a" b+ - —ab" 2+ b" ) f(x)"]
=(a+B)f(x)" =(atB)f(x").

Having shown that @ C F, we now show that F is continuous on R. We begin by
showing continuity at 0. If x>y > 0, then

fe"—y")  f(x"+y")

x—y x+y

=3[ ()" f(y) +£(2)" () + () f(9)" ] 20,

so that

n n x+l n n
0<f(x"+y") < Thf(x" = y").
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Replace x and y with (1 +x)" and x'/" respectively, x > 0, to obtain

(1+x)1/" + 1/
(1+x)1/" —xl/n

0<f(l1+2x)<

().

The right-hand side of this last inequality is bounded on any finite interval, hence
f(x) is bounded above by some constant M on the interval [1,2]. Now for 1/2% <
x<1/2K1 k a positive integer, f(x)=f(2%x)/2" < M /2% Because f is odd, we
conclude that lim , , o f(x) = 0. From the given functional equation,

lim f(x" —y")

y—0

= lim (o= [F)" 7 TS + @)+ ()"
=f(x)"" =f(x").

Therefore, f is continuous on R. Because f(x) =xf(1) for x € F and F is dense in R,
it follows that f(x)=xf(1) for x € R. Finally, again from f(1")=1-f(1)""", we
conclude that f(x)=x or, if n> 1, f(x)=0.

Also solved by Cai Bo (Australia), Sabin Cautis (Canada), Daniele Donini (Italy), Thomas Jager, and
the proposer.

A Constrained Trigonometric Inequality April 1997

1522. Proposed by Bogdan Kotkowski, Kent State University, Tuscarawas Campus,
New Philadelphia, Ohio.
Prove that if

2 2
cos? @+ cos® B+ cos®y+ 2cos « cos Bcosy =1
and two of the expressions
cos a cos B+ cos vy, cos B cosy + cos «, cos y cos a + cos 3

are positive, then the third expression is also. Moreover, if «, B8, and y are positive
numbers less than 7, then e + B+ y= 7.

Solution by Thomas Jager, Calvin College, Grand Rapids, Michigan.
Without loss of generality, suppose the first two expressions are positive. Then,

0 < (cos a cos B+ cos y)(cos B cosy+ cos a)
= (cos® B+ 1)cos a cos y + cos B(cos® a + cos® y)
= (cos® B+ 1)cos a cos y + cos B(1 — cos® B — 2cos acos Beosy)

= (1 —cos® B)(cos a cos y+ cos B).

Because 1 — cos® B> 0, it follows that cos @ cos y + cos B is positive.
Suppose, in addition, that 0 < «, B, vy < 7. Applying the quadratic formula to the
equation produces

cosy= —cos & cos B+ \/(l—cos2 a)(1—cos®> B) = —cos acos B+ sin a sin B.
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Since cos @ cos B+ cos 7y is positive,

cosy= —cos a cos B+ sin asin B=cos(7— (a+B)).
Suppose m < a + B < 27. Then, —7 < 7—(a+ B)<0,s0y=(a+ B)— 7. Hence,
cosy cos B+ cos a = cosy cos B — cos(y— )= —sinysin <0, which is false.

Thus, 0<a+ B<m, sothat 0<7m—(a+B)<wm and y=7—(a+ B).

Also solved by Cai Bo (Australia), Sabin Cautis (Canada), Daniele Donini (Italy), S. A. Greenspan,
Robert Heller, Murray S. Klamkin (Canada), Victor Y. Kutsenok, Kee-Wai Lau (Hong Kong), Ioana
Mihaila, Can A. Minh (graduate student), P. E. Niiesch (Switzerland), Allan Pedersen (Denmark),
Michael Vowe (Switzerland), David Zhu, and the proposer. There was one incorrect solution.

A Maclaurin Series with Integral Coefficients April 1997
1523. Proposed by Emeric Deutsch, Polytechnic University, Brooklyn, New York.

Let m and n be positive integers. Show that the Maclaurin series expansion of

f (T = —2— ———l — sin larcsin 3‘/5 n?
’ BV md 3 2 (1—mx)’

has integer coefficients.

I. Solution by Daniele Donini, Bertinoro, Italy.

The domain of f(x), as it is defined, is an interval I = (0, §], with § > 0 depending
on m and n. Let x € I. Applying the formula sin3a = 3sin & — 4sin® @, one may
verify that f(x) satisfies

nef(x)’ — (1 —ma) f(x) +1=0, (1)
so that g(x, f(x)) =0, where g(x,y)=nx’y®— (1 —mx)y+ 1. Since g(0,1)=0
and dg/dy(0,1) = —1 # 0, the implicit function theorem assures that f(x) may be

extended to a real analytic function in a neighborhood of x = 0. Let f(x) = X7_ya,x*
be the Maclaurin series expansion of f(x). Substituting into (1), we have

(1—ay) + (may—a,)x+ (ma, —ay) x>
foe]
+ ) (mak_l —a,+n Y a;a;a k=0,
k=3 i+j+l=k-3
or, equivalently,

ay=1,a,=m, ay=m>, ay =ma,_, +n > a,.aja,,for k>3.
i+j+l=k-3
Thus, a, is a positive integer for every k.

II. Solution by Paul Bracken, Centre de Recherches Mathématiques, Montreal,
Québec, Canada.
We show, more generally, that the Maclaurin series expansion of

1—mx . |1 3\/5 nx®

sin | 5 arcsin oI
3 2 (1 —mx)™"

2
=7

nx®
has integer coefficients for all nonnegative integers p.
Set

s’

(1—mx)*"™!

3
6 = arcsin )
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Then the identity sin 6 = 3sin(8,/3) — 4sin*(0,/3) leads to the equation

3
nx 3 1
l—mxf(x) _f(x) + (l—mx)l) =0
For v, w, and y satisfying
wy!—y+v=0,orw= yy—qU’

we wish to find the power series expansion of y in terms of w (and v) about the point
w=0, y=uv. The general Lagrange series expansion of w —w,=(y —y,)/g(y),
g(wy) # 0, about w = w,, y =y,, is given by

k k
g(y) )(w_wo)
k=1 y=yq
(see T. J. I. Bromwich, An Introduction to the Theory of Infinite Series, 1947, p. 159,
or M. Abramowitz and C. Stegun, Handbook of Mathematical Functions with Formu-

las, Graphs, and Mathematical Tables, 9th printing, 1972, p. 14). Applied to our
situation, this yields
ykq ) wk
y=v

1( kg ) (kq-l—l) ( kg )
klk—1 k k—1

/k is an integer. Because the Maclaurin series expansions of

ll\
Yy=yot Z kl( dy'

k-1

Now, the identity

shows that k(’

nx® /(1 — mx) and (1 —mx)™" have integral coefficients, the former with no constant
term, substituting for v and w and expanding shows that the Maclaurin series of f in
terms of x has integral coefficients.

Also solved by Thomas Jager, Hans Kappus (Switzerland), Peter W. Lindstrom, Howard Cary Morris,
Michael Vowe (Switzerland), and the proposer.

Answers

Solutions to the Quickies on page 143.

A877. Letting h and a denote the number of hits and official at bats before the last
hit. Then

h+1_ll+ 1

a+1 a 2000
Solving for h yields h = a(1999 — @) /2000. Since h > 0, it follows that 16 divides one
of the positive integers a and 1999 — g, and that 125 divides the other. Thus, we may
write a and 1999 — a as 16m and 125n, in some order. Since 16m + 125n = 1999, we
have 0 <n < 16 and —3n =15 (mod 16), hence n = —5 (mod 16). Therefore, n = 11
and m = 39. There are two possibilities: a = 1375 and h = 429, a batting average of
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312, or @ =624 and h = 429, a batting average of .6875. No major league batter has
approached the latter average over even half as many at bats (the modern major
league record for one season is .424, set by Rogers Hornsby in 1924 in 536 at bats);
thus, the second answer is highly improbable.

A878. We show that

lim Into(n) _ In4.

n—ow n

There are two ways to tile a 2 X 2 square. Dividing a 2" X 2" checkerboard into
4"712 % 2 squares, we see that 24" < ¢(n). On the other hand, there are at most 4
ways a 1 X2 tile can cover a square of the checkerboard in such a tiling. Thus,
c(n) < 4*". Taking logarithms twice yields

(n=1)n4+Inln2<Inlne¢(n) <nln4+Inln4.
The desired limit follows from dividing by n and letting n approach .

A879. 1. Let r be the radius of S and let a be the angle formed by the line segment
between the centers of the two spheres and any radius from the center of S to a point
on the intersection of S and B. Then, by the law of cosines, 1 = 9r2 —9r2cos a =
272(1 — cos ). The area of S inside B equals

fa(27rr sin 0)rdf=2mwr*(1 —cos a) = .
0

II. We will use the theorem of Archimedes that the projection of S to the surface of
a circumscribed cylinder preserves areas. Let r be the radius of S, and let y be the
radius of the intersection of S and B. Let h be the height of the projection of the part
of S lying inside B to the circumscribed cylinder parallel to the segment between the
centers of S and B, as in the diagram. We have yz +h%*=1 and y2 +(r—=h2=r
Solving these equations for h, we get h=1/(2r). The area of that part of S lying
inside B equals that of the projection, which is 27 rh = 7.
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PAUL J. CAMPBELL, editor
Beloit College

1997-98: Universitat Augsburg,
Germany

Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles and books are selected for
this section to call attention to interesting mathematical exposition that occurs outside the
mainstream of mathematics literature. Readers are invited to suggest items for review to
the editors.

GIMPS discovers 37th known Mersenne prime, 23721377 _ 1 is now the largest known prime,
http://www.mersenne.org/3021377.htm . Rae-Dupree, Janet, Student hits math jackpot,
San Jose Mercury News (2 February 1998) http://www.sjmercury.com/scitech/center/
prime020398.htm . Caldwell, Chris K., The art of giant slaying is refined: GIMPS finds
23P21377 _ 1 is prime, http://wuw.utm.edu/research/primes/notes/3021377/ .

Another year, another Mersenne prime, found by an even larger team of computers (4,000).
This time, the newsworthy aspect was that the winning candidate turned out to be tested
on the computer of a college student. Can we say that he discovered it? Or did he just win a
kind of lottery? For the 38th Mersenne prime, it really will be like a lottery: The person on
whose computer it is found will win max{ $1000, $1 x (number of digits)/1000 }, thanks to
Scott Kurowski, author of the software used. If there are infinitely many Mersenne primes,
eventually every participant should win!

Forbes, Tony, Ten primes: A search for ten consecutive primes in arithmetic progression,
http://www.1ltkz.demon.co.uk/ar2/10primes.htm .

Recently, it has been hard to keep up with progress in consecutive primes in arithmetic
progression. Only in 1995 was the first sequence of seven discovered; in late 1997, a sequence
of eight was found; and early in 1998, a set of nine was discovered (along with 27 new sets
of eight and hundreds of sets of seven, thereby greatly cheapening sets of seven or eight).
We refrain from printing the 92-digit starting prime (the common difference is only 210),
especially since the hunt is already on for a set of ten. Leader Forbes expects to have to
try about 3 x 10*® candidates, which would take about 250,000 years on a typical PC. But,
like the search for the set of nine, this will be a distributed effort running in the spare
time of collaborators’ computers. If this search had as many collaborators as GIMPS (fat
chancel—no prize money here), it would take only about 6 years. So, the next several
times that somebody on the street asks you what the record is for consecutive primes in
progression, you can be confident of probably being right if you say “9.”

Corry, Leo, Jirgen Renn, and John Stackel, Belated decision in the Hilbert-Einstein priority
dispute, Science 278 (14 November 1997) 1270-1273.

Perhaps forgotten by many mathematicians is Hilbert’s great interest in physics. At almost
the same time as Einstein, he published the theory of general relativity. Examination of the
proofs of Hilbert’s paper, however, reveals that he added crucial elements in proof, perhaps
after seeing Einstein’s results; they had consulted frequently on the problem.

152



VOL. 71, NO. 2, APRIL 1998 153

Hayes, Brian, The invention of the genetic code, American Scientist (January-February
1998). Also available at http://www.amsci.org/amsci/issues/Comsci98/compsci9801/
html .

This article recounts the code-breaking attempts that followed Watson and Crick’s discovery
of the double helix of DNA. The question was, how did the sequence of bases in DNA
code for amino acids? There are 4 kinds of bases and 20 kinds of amino acids. A code
whose codewords (codons) consist of three consecutive bases provides 2° = 64 different
codewords, far more than the 20 needed. Physicists George Gamow, Edward Teller, and
Richard Feynman all proposed such codes that were overlapping, meaning that each base
was a part of three consecutive codeword of three bases each. In most of these ingenious
attempts, the 64 codons sorted themselves into exactly 20 families. All of these codes were
ruled out by experimental evidence. In 1957, Crick proposed a comma-free code, in which,
of the three codons that each base belongs to, only one holds biochemical meaning and
the other two must be nonsense. The codons AAA, CCC, GGG, and UUU would have to
be nonsense; the remaining 60 codons are factored by cyclic permutation into 20 groups,
but only one in each group could be meaningful. Another beautiful theory! But in 1961
it was discovered that UUU does code for an amino acid. By 1965, the genetic code was
mostly solved, by laboratory work. It turned out to be fairly redundant (hence tolerant of
mutations): Some amino acids are coded for by as many as six codons. This is a fascinating
tale of “intellectual elegance” vs. reality; the proposed mathematical models were not the
solution to the original problem but did lead to fruitful mathematical research into codes.

Bogomolny, Alex, Cut the knot! An interactive column using Java applets, http://www.
maa.org/editorial/knot/ . Interactive Mathematics Miscellany and Puzzles, http://
www.cut-the-not.com/ .

MAA Online, the presence of the MAA on the Worldwide Web, features several regular
columns, most of which have been reviewed here earlier. Here we look at a relatively
new column, intended mainly for teachers, students, and parents. Each monthly edition
contains a puzzle or problem simulation in the form of a Java applet (a program, downloaded
automatically, that makes the screen of your Web browser change dynamically with your
input). Recent.topics include breaking a chocolate bar into component squares (how many
breaks does it take? try on the screen and see) and properties of addition and multiplication
tables (pick a base to view them in). Author Bogomolny also maintains a Web site with
far more material of the same sort, plus other resources, which should be interesting to
puzzle-lovers everywhere.

West, Beverly, Steven Strogatz, Jean Marie McDill, John Cantwell, and Hubert Hohn,
Interactive Differential Equations, Addison Wesley Longman, 1997; xvi + 357 pp + CD-
ROM (Macintosh/Windows) + User’s Guides for Macintosh and Windows. ISBN 0-201-
57132-3.

Here is a fun and useful collection of “tools” to supplement a course in differential equations
with productive labs. Its 90 groups of activities, in 31 units, are keyed to appropriate chap-
ters of major textbooks. The activities are grouped into first-order differential equations,
second-order equations, linear algebra, systems of differential equations, chaos and bifurca-
tion, and series solutions and boundary value problems. Students’ favorite labs are likely
to be Golf (why does the theory mispredict the optimal angle for the longest drive?) and
Romeo and Juliet (in which students can explore the consequences of various emotional
responses of the two), while I particularly enjoyed exploring graphically the differences
between exact solution curves and ones computed numerically.



NEWS AND LETTERS

58th Annual William Lowell Putnam Mathematical
Competition

A-1 Arectangle, HOMF, has sides HO = 11 and OM = 5. A triangle ABC has H as
the intersection of the altitudes, O the center of the circumscribed circle, M the midpoint
of BC, and F the foot of the altitude from A. What is the length of BC'?

H 0
5
F 11 M

Solution. The length of BC' is 28.

Place coordinates on the rectangle so that ' = (0,0), M = (11,0),- O = (11,5), H =
(0, 5), and because B and C are on the z-axis, suppose that B = (—b, 0). Then, because M
is the midpoint of BC, C' = (224, 0). The equation of line AC is 5y = —b(z — (22+1)),
and it follows that A = (0, (b% + 22b)/5), and D, the midpoint of AC' has coordinates
((22 + b)/2, (b% + 22b)/10). In addition OD has slope 5/b, so

(b* +22b)/10 =5 _ 5
(22+0b)/2 —11 b’

This equation has three solutions: b = 0, which corresponds to an infinite triangle, b = —25
and b = 3, which give the same triangle (except for labeling) and give the answer.

A-2 Players 1,2,3,...,n are seated around a table and each has a single penny. Player 1
passes a penny to Player 2, who then passes two pennies to Player 3. Player 3 then passes
one penny to Player 4, who passes two pennies to Player 5, and so on, players alternately
passing one penny or two to the next player who still has some pennies. A player who runs
out of pennies drops out of the game and leaves the table. Find an infinite set of numbers n
for which some player ends up with all n pennies.

Solution. Ifn =2°+2, (s =1,2,3,...), Player 3 ends with 2° + 2 coins.

LEMMA 1. Suppose there are 2N + 2 players at the beginning of the game. After one
round (that is, after each player has passed once), exactly IV players remain in the game.
Player 3 will have just received 2 coins from Player 2V + 2 and will have 4 coins. All other
remaining players will have 2 coins.

154
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Proof. Players 1 and 2 will drop out after their first pass. Odd-numbered players greater
than 3 receive 2 pennies and give 1 away, for a net gain of 1, leaving those players with
2 coins. Even-numbered players greater than 2 receive 1 penny but give away 2, so must
drop out of the game. Player 3 receives 2 pennies from Player 2N + 2, so ends this round
with 4 pennies, and will continue in the next round by passing 1 coin.

LEMMA 2. Suppose there are 2N players at the beginning of the game, and suppose that
Player 1 has a + 2 pennies, that the even-numbered players have b pennies, b < a, and
that the odd-numbered players larger than 1 have a pennies. Then after one round, the
odd-numbered players will each have one more penny, and the even-numbered players will
have one fewer penny. Also, Player 1 will have just received 2 pennies from Player 2V
Consequently, after b rounds, only N players will remain in the game; Player 1 will have
a + b+ 2 coins, and all other remaining players will have a + b coins.

Proof. Odd-numbered players receive 2 coins and give away 1, for a net gain of 1; even-
numbered players receive 1 penny but give away 2, for a net loss of 1.

So now, suppose we begin with 2% + 2 players. After one round 2°~! players remain in
the game; one of them, Player 3, has 4 pennies and all other remaining players have 2 (from
Lemma 1). After 2 more rounds, Player 3 has 6 coins, and the remaining 2°~2 players have
4 coins apiece (from Lemma 2). At the next stage (4 more rounds), Player 3 has 10 coins
and the remaining 2°~3 players have 8. At each stage the number of players is cut in half,
and in the end, Player 3 will have all the pennies.

A-3 Evaluate
(s ] 173 zs :127 :E2 $4 :EG
/0 (m“2‘+2—.—4‘m+'“) (“52‘*22.42*22.42.62“”“') de.

Solution 1. The first multiplicand is ze=="/2 > 0 for z > 0, so by the monotone conver-
gence theorem, the integral in question is equal to

oo 29 n IlIZk e 2k+1 —22/2

. -z

Jim o ze Z22kkl2 Z/ TRz R 9T
k=0

Integrating by parts gives

/oo z2k+1e-—m2/2 dz = 2k /°° x2k—le-—x2/2 dr.
0 0

By induction on &,

/°° 22k Hle="/2 o — ok f /°° ze=%" /2 dg = 2k k! .
0 0

o o]
1
Therefore the value of the integral is ; i Ve.
=0
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Solution 2. Let u = 22 /2 and du = z dz. Under this substitution, our integral becomes

R e [l L

oo_uoo u —oo 1 . B
=/) e ;Wdu—rg)m/ u"e du = Z

n=0

2n(nl)2

where the interchange of the integral and summation is justified because the power series
in the integrand is uniformly convergent on the interval [0, 00], and where we have used the
(e}

the formula I'(n + 1) = / u"e”" du = nl. So our integral is
0

Z (1/2)" =e.

n=0

A-4 Let G be a group with identity e and ¢ : G — G a function such that
¢(91)8(92)9(g3) = d(h1)d(h2)d(h3)

whenever g1g29s = e = hihghs. Prove that there exists an element a in G such that
¥(z) = ad(x) is a homomorphism (that is, ¥ (zy) = ¢¥(z)y(y) forall z and y in G).

Solution. Because a group homomorphism takes the identity to the identity, e = 1 (e) =
-1
ad(e), so if ¢ is a homomorphism, @ must be (¢(e)) . So define ¥(z) = a¢(zx), where
a”! = ¢(e).

From ezz ™!

= e = zex™! = eee, our condition implies that

a”P(@)p(z7!) = p(z)a p(z™!) =a”.
The first equality (after cancellation) shows that a~* (and a) commutes with ¢(z) for all z.

)
This fact, together with the second equality, shows that ¢(z~!) = (¢(z)) a~2. Using
this and eee = e = zy(y~1z~!), we see that

0™ = (@)o)o((2y) ™) = 9(z)ow) (d(ay)) 0,
50 ¢(ay) = a $(z)¢(y). Thus,
b(zy) = adlay) = a®9(2)6(w) = (16(2)) (a6®)) = P@)W().

A-5 Let N, denote the number of ordered n-tuples of positive integers (a1, az, ..., an)
such that 1/a; + 1/az + - - - + 1/a, = 1. Determine whether Ny, is even or odd.

Solution. The number of different ordered 10-tuples for each multiset {a1, az, ... ,a10}
!
isM = m—l%, where the m; are the multiplicities. For any given multiplicities, an
it

unordered multiset A contributes to N1g (mod 2) if and only if M is odd. As 10 has two
nonzero binary digits, this can happen in exactly two ways: m; = 10, or {my,ms} =
{2,8}. The first case corresponds to the single solution (10,10,...,10), the second to
solutions {a,a,b,...,b}, where 2/a + 8/b = 1, and @ # b. This last equation can be
rewritten ab = 2b + 8a or (a — 2)(b — 8) = 16. The solutions (a, b) are (3, 24), (4, 16),
(6,12), (18,9). Therefore Ny is odd.
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A-6 For a positive integer n and any real number ¢, define ;. recursively by zo = 0,
z1 = 1,and for k > 0,
i1 — (n — k)zp

k+1

Fix n and then take c to be the largest value for which ,41 = 0. Find z in terms of n
andk,1 <k <n.

Thyz =

Solution. For n = 1, o = c. Thus, the only value that works forn = 1isc¢ = 0, in

which case g = 0, z1 = 1, and 2 = 0. In general, z, is a polynomial in c of degree at

most k — 1. Thus, z,4+1 = 0 has at most n solutions for ¢c. We claim these solutions are

{—(n -1),-(n-3),...,n—5,n—3,n — 1}, and that for ¢ = n — 1 the sequence is
n—1

Ty = (k—l) forl1<k<mn.

We prove this claim by induction on n. We have already verified the claim for n = 1.
Assume now that the claim is proved for n > 1. Choose ¢ from among the members of
{-=(n-1),...,n — 3,n — 1} and let y; be the corresponding sequence. Define z; =
Yk + Yr—1 for k > 1, and set zo = 0. We are given (k + 1)yr+2 + (n — k)yr = cyg41 for
k > 0. Then

(k+Dzppe+(n+1-k)zr = (k+1) Wrs2 + Yrt1) + (0 +1—K) (yr + yr—1)
= cYk41 + Yk + Uk + Yrt1 = (¢ + 1) (k+1 + k) = (¢ + 1)Tpqa.

Thus, z;, satisfies the required recurrence for n+1 and c+ 1. Also, Tnt2 = Ynt2+Ynt1 =
0, since yn+1 = 0 implies y,4+2 = 0 by the recurrence. This proves that for n + 1 the
solutions t0 42 = 0 include {—(n — 2),...,n —2,n}.

Also, the sequence

n—1 n-—1 n
Tk = Yot Y1 = (k—1)+<k—2> = (k—l)

for ¢ = n. To prove ¢ = n is the largest solution for n + 1, we must produce the missing
value. If z is the sequence for ¢ = n, it is easy to see that y;, = (—1)*~1xy, is the sequence
for ¢ = —n. Thus, ¢ = —n is the (n + 1)-st distinct solution to &2, Which proves our
claim entirely.

B-1 Let {z} denote the distance between the real number x and the nearest integer. For
each positive integer n, evaluate

5= 3 ({32} {52))-

(Here, min(a, b) denotes the minimum of a and b.)

Solution. Using the properties { —z} = {z} = {1 + z}, we see that

min ({75 {75 }) =min (1 (5D
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3n-1

Thus, by symmetry, S,, = 2 Z min ({ g:z} {én_z }) . Note that

m .
{ln_} 3 if1 <m < 3n/2,
3n 1- 3—, if3n/2<m<3n-1

Also,1— 2 > ™ it and only if m < 2n. Thus,
3n ~ 6n

1 2 m o m @en)2n+1) =k 2n+1 (n— 1)n
—- —_ l-—) = ——= —_— = =
25 Z= 6n m;ﬂ (*-3) 12n +; 3”6 | 6n

This proves S,, = n.

B-2 Let f be a twice-differentiable real-valued function satisfying

f@) + f"(z) = —zg(z) f'(2),
where g(z) > 0 for all real z. Prove that | f(z)| is bounded.

Solution. Forz > 0,
7@ (1@ + 1)) = ~o(F'@) o) < 0
2 2
Setting F'(z) = ( f (z)) + ( f (a:)) , we conclude that F'(z) < 0, or by integration,

F(z) = F(0) + /0 “F@)dt < F0).

Therefore F(z), and hence | f(z)|, is bounded above as z — 00.
Setting h(z) = f(—z), we have h(z) + h"(z) = —zg(—2z)h'(z), so |h(z)| = |f(—~z)|
is bounded above as z — oo as well.

n

s . 1.
B-3 For each positive integer n write the sum Z o in the form Pn

— where p,, and g,
qn

m=1
are relatively prime positive integers. Determine all n such that 5 does not divide g,.

Solution. Such n must lie in one of the ranges 1 to 4, 20 to 24, 100 to 104, or 120 to 124,
inclusive.

Let S be the set of n such that 5 does not divide g,. Define p(n) = |n/5] and

1

the sum extending over only those m not divisible by 5. Then s, = t, + 5,(n)/5. The
denominator of ¢, is clearly prime to 5. Since s, = t, for 1 < n < 4, these values
1,2,3,4 belong to S. For n > 5, s, has denominator prime to 5 if and only if s,(,) has
denominator prime to 5 and numerator divisible by 5.
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The next smallest member n of S must satisfy p(n) = 1,2,3, or 4. Of 1,2,3,4, only
84 = 25/12 has numerator divisible by 5. Thus the next smallest members of S are 20 to
24 (all then With p(n) = 4).

Note that Z 5 kl has numerator divisible by 25, while Z 5 kl ] has numerator

I=
relatively pnme to 5 for j = 1,2, 3. Thus, among 20 to 24, only sg¢ and So24 have numerator
divisible by 5, since s5/5 = 5 / 12 and 59 and t24 have numerator divisible by 25.

Thus, 100 to 104 and 120 to 124, inclusive, all belong to S. For these n,

L=t 4 o) Sp(n) =t + P()+3P(P())=tn+ p(n) | 2

5 5 25 5 12’
since p(p(n)) = 4. Since p(n) = 20 or 24, t,(,,) has numerator divisible by 25. Observing
1
that ST + A has numerator divisible by 5 for 1 < I < 4, we are left to
consider which of

101 © 127 101 102 T 12’ 121 ' 127 121 ' 122 ' 12

has numerator divisible by 5. Working modulo 5, it is easy to see that none of these sums
does. Hence, none of n = 100 to 104 or 120 to 124 yields a sum s,, with numerator
divisible by 5. The tree stops here.

B-4 Leta,y,,, denote the coefficient of z™ in the expansion of (1 + z + z2)™. Prove that

forall k > 0,
[2k/3]

0< > (-Diap—ii <1

=0

Solution. The z™ coefficient of (1 — z + z2)™ is (—1)"am,,. Therefore, the sum in
question is the z* coefficient of

P1l-z+2)° +z(l-z+2) +22Q -+’ + - +2*Q -z + )+

_ 1 1/ 1 142\ =, 4n | dnt1
_l—ac(l—a:+a:2)_2<1—:c+1+:z:2)_;:;)(z 2.

2 2
27 in 2 Sn-1
B-5 Prove that forn > 2, 2 } =2 } (mod n).

Solution. Every integer n > 0 can be written uniquely as n = 2tm, where m is odd.
LEMMA. If ¢ denotes the Euler ¢-function and a and b are integers such thata > b > ¢
and a = b (mod ¢(m)), then 2¢ = 2° (mod n).
Proof. Ast < a,b, 2% — 2% is divisible by 2¢. By Euler’s theorem, 2¢ = 2° (mod m).
Since 2¢ and m are relatively prime, n divides 2% — 2°.

Now let a; = 2, ary+1 = 2% for k > 1. As 2% > aj + 1, by inductionon k, ar—1 > k.
Fork > 2andn = 2'm < k, we have ax_1 > agr_o > k — 1> 2¢ — 1 > t. Therefore,

ak—2 = ap—1 (mod ¢(m)) => ar—1 =ar (mod n).
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As ¢(m) < m —1 < n — 1, the statement
ax—1 =ar (mod n) foralln < k,

follows by induction on k.

B-6 The dissection of the 3-4-5 triangle shown below has diameter 5/2.

Find the least diameter of a dissection of this triangle into four parts. (The diameter of a
dissection is the least upper bound of the distances between pairs of points belonging to the
same part.)

Solution. d = 25/13.

A
D

F I

B G c

Take points D, E on AB, AC sothat AD = DE = EC (i.e., = 25/13). By the pigeon-
hole principle, two of A, B, C, D, E must lie in the same set. So some set must have
a diameter at least 25/13, the minimum distance between any two of A, B,C, D, E. On
the other hand, one can find points F', G, H, I, (for example, with BF = 20/13, CG =
25/13 = AH and I the midpoint of C'D) so that the diameters of ADH, BFIG, CEIG,
DFIEH are each < 25/13. FG = /596/13, BI = CI = DI = 1/562.5/13, EG =
v/500/13, FE = 24/13, IH = /362.5/13, FH = 1/369/13.
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