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1. Introduction 

Imagine a powerful beacon positioned on an island, its beam illuminating the (convex) 
shoreline of a lake as it rotates counterclockwise with constant angular velocity w. Is 
there any place on the lake where an observer could sit in a rowboat so that the 
illuminated spot on the beach always appears to move about the shoreline in a 
counterclockwise direction? The reader might be inclined to think that nothing to the 
contrary could occur, that any place on the lake would be equally satisfactoiy. 
However, if w is large enough, and if we take into account the finite speed of light, 
then some unexpected behavior results. 

One pulrose of this paper is to characterize the set of "ordinai-y" vantage points, 
from which the beacon's light show is always counterclockwise. We prove that at 
moderate rotation rates the set of ordinaiy points is a proper, open, convex subset 
of the region bounded by the shoreline. Furthermore, in all cases save one, the set of 
ordinary points will be empty at high rotation rates. The single exception is the case of 
an elliptical shoreline with the beacon at one focus. In this case the set of ordinaly 
points always contains the second focus of the ellipse. As the rotation rate of the 
beacon increases, the set of ordinaiy points shrinks to the second focus at a rate which 
(to first order) is inversely proportional to the rotation rate of the beacon. 

An investigation into the structure of the set of ordinaiy points leads us into 
mathematics that is interesting in its own right. For example, in order to study the 
"sshape" of the set of ordinary points we construct an explicit parametrization for the 
envelope of a family of lines that make specified angles with some fixed curve. This 
parametrization should be of general interest apart from its specific application in our 
paper. (In a number of cases it is much easier to use our parametrization than to cariy 
out the classical envelope procedure.) Another result of some general interest is our 
"elliptical" generalization of unit normalization: given an ellipse, pick a focus and 
scale each point on the ellipse "away" from that focus by the reciprocal of its distance 
to the second focus. In the case of a circle the result is of course simply a concentric 
unit circle. More generally, in the case of an ellipse the result is always a second 
ellipse whose congruence class depends only upon the similarity class of the original 
ellipse. 

Our most surprising result (Theorem 6) has to do with the slhape of the ordinaiy set 
at high rotation rates in the case of an elliptical shoreline with the beacon at one focus. 
We prove that this shape is described by a (classical) curve known as an antiortho- 
tomnic of an ellipse. (See FIGURE 14 for an example of an antiorthotomic.) However, the 

83 
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ellipse in question is not our shoreline, but its "elliptical" normalization. The manner 
in which the kinematics of the rotating beacon and these other seemingly unrelated 
elements come together is, to us, most pleasing. 

But first, let's review the problem as stated in the related rates section of the typical 
calculus text: "A beacon rotating countercloclwise at w radians per second is one mile 
from shore. How quickly does the illuminated spot on the shoreline move along the 
beach?" Assume the beacon is located at a point Q. Since the assumption in this 
problem is that the beach is a straight line, let x be a coordinate along the beach such 
that the point R on the beach closest to the beacon corresponds to x = 0. (See 
FIGURE 1.) Let 0 denote the angle between the direction of the beacon and ray QR at 
time t. The (usually unstated) assumption that the speed of light is infinite implies 
that at any given time there will be a (unique) spot of light on the beach if and only if 
the beacon is pointing towards the shoreline at that moment. In this case, x = tan 0 
and by the chain rule 

dIX dx dO0 20 ( IT 61 dO = w 0 (1 + ) (1) 

Note that according to this solution the position x of the spot is a strictly increasing 
function of t and its velocity "' becomes infinite as I xlI approaches infinity. Likewise, 
the velocity of the spot becomes infinite as w approaches infinity. 

P 

x 

o=arctanx 
wIR 

FIGURE 1 
The beacon, Q, and illuminated spot P. 

One problem with this solution is that it ignores the fact the speed of light c is 
actually finite. Of course, for all practical terrestrial problems this objection is rather 
academic. Nonetheless, we can still ask for the correct model under the assumption of 
finite light speed. To compute the velocity of the spot under this assumption, we must 
differentiate position x with respect to the time t at which the light from the beacon 
actually arrives at x. It follows from the analysis in [1] that, in this case, 

dIX- cw( + x2) (2) 
d t c 9 

A little algebra reveals that the denominator of (2) vanishes at xo -2 

so the velocity of the spot is undefined at xo. (For example, if the beacon is rotating at 
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one revolution per minute, then x0 -1333 miles.) Geometlically, x0 is the point at 
which the spiral wavefront of light from the beacon initially "splashes" onto the 
beach. (See FIGURE 2.) The velocity of the spot is negative for x < x0 and is positive for 
X > x0. Thus, contrary to the infinite light speed solution, the spot on the shoreline is 
actually moving in the 'negative x direction for x <X0. (A similar phenomenon 
sometimes appears in old war movies: a machine gunner sWings his machine gun in an 
arc from a position parallel to a building toward the building while firing the gun; 
however, the bullet holes strike the wall in the reverse direction, with the track of 
bullet holes traveling away from the gun. A safer demonstration of this phenomenon 
can be performed with a rotating lawn sprinkler.) 

Q R 

x, 

FIGURE 2 
A wave rolls onto the beach. 

If we allow c to approach infinity in equation (2) then we recover the infinite light 
speed solution of equation (1). Furthermore, note that as I x I approaches infinity the 
speed of the spot does not become infinite but instead approaches c. On the other 
hand, near the point x0 the speed of the spot does become arbitrarily large. (See [3] 
for further discussions of such phenomena.) As w approaches infinity the initial 

contact point x0 approaches 0 and the velocity of the spot at x 0 0 approaches 1 ' 
Although this limiting velocity has magnitude greater than c, it is still finite. If we 
assume the beacon has been rotating for all time, then at any given moment there will 
be infinitely many spots moving along the shoreline in both directions. Note that these 
conclusions are in dramatic opposition to those of the infinite light speed model. 

As is suggested in [1], let us now imagine that the "beach" is actually a smooth 
convex closed curve. In fact, to "reflect" the function of the beach more accurately, 
we will henceforth refer to it as a "screen." We will choose a coordinate system such 
that the beacon is at the origin and the screen is described by a polar graph 
r =f(0) > 0. To simplify our formulas we will choose our units such that the speed of 
light c is equal to 1. Assume that at time t = 0 the beacon points in the direction 
0 = 0. The time at which light illuminates the spot at r =f(0) is given by 

t=t(0)= 0 +f(0). By the familiar arclength formula, I/S = V/[f(e)]2 + [f'(0)]2, 
where s = s(0) is the distance measured counterclockwise along the screen from the 
point r =f(O) to the point r =f(0). (This notation and these assumptions will remain 
in effect throughout the remainder of this paper.) Then, lt = 1 +f'(0) so that on 

intervals of 0 for which f'(0) - 9, we can express 0 as a smooth function of t 
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with implicit derivative do 
+ Using the chain rule, the velocity v(0) of the 

dt +Wf'(O) 
spot on the screen at point r =f(0) is given by 

ds _ds do _ w [f( 0)12 + [f' 0)12 v (0) = t d do d1t - 1 + Wf'(0) (3) 

Since the sign of v( 0) is equal to that of dO we see that the spot is moving it 
counterclockwise around the screen when v(0) > 0 and is moving clockwise when 
v(O) < 0. As in the case of a straight beach, there may be more than one spot on the 
screen at a time. To better understand this phenomenon, consider first FIGURE 3, 
where the beacon is rotating at a slow rate. At any time, only one spot on the screen is 
illuminated, and the "light show" on the screen is always moving counterclockwise. 
However, FIGURE 4 illustrates that as the rotation rate increases, a qualitative change in 

1 /2 A/ 

4 25 6. J 

7 8 9 

10 212 

FIGURE 3 
Slower rotation. 

44 \ 5 < 6 

V J7 8 V _,9 

,/10 /11 /12 

FIGURE 4 
Faster rotation. 
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the behavior of the spot takes place. Up to around t = 3 there is a single spot on the 
screen. Thlen, at about t = 3, a "splash" occurs and three points on the screen are 
illuminated; two of these move countercloclwise and the other moves clockwise. 
Shortly after t = 6, two of these spots collide (at infinite speed) in a "crash" and 
disappear at one end of the screen while the third continues moving counterclockwise 
at the other end. 

As the rotation rate is increased, more and more points along tlle screen wvill be 
illuminated concurrently, so that as w -> oo the entire screen becomes ablaze with 
light continually moving in both directions. Even more complications can arise. For 
example, if f'(0) = - I on some interval then light from the beacon arrives at all the 
corresponding points r =f( 0) simultaneously. (Geometrically, this means that a 
portion of the screen actually coincides with the wavefront of the beacon.) In this 
case, it becomes difficult even to define the "position" of the spot on the screen. 
Such a light show is in a stark contrast to what one might "naively" expect; namely, a 
single spot of light moving counterclockwise around the screen. However, with this 
naive expectation in mind, we define a vantage point within the region bounded by 
the screen to be ordinary for a particular rotation rate, if the view of the screen from 
that point shows a single spot of light moving with finite speed countercloclwise 
around the screen. A vantage point that is not ordinary will be called extraordinary. 

Given the possible complexity of the light show on the screen, the determination of 
the set of ordinaly points might appear to be a difficult problem. However, as we will 
see in the next section, its solution becomes relatively straightforward if we ignore 
what is actually occurring, and focus instead upon what appears to be happening. 

2. Ordinary vantage points and separation lines 

In assigning space and time coordinates to physical events it is important to distin- 
guish between observing an event and seeing the event occur. In effect, an "observer" 
is assumed to be omniscient and omnipresent, knowing at every "instant" what is 
going on anywhere within the observer's frame of reference. On the other hand, for 
someone to "see" an event occur, light must travel from the location of the event to 
the eyes of the person viewing it. Because of this optical backlog, what is actually 
happening and what appears to be occurring can be quite different. Henceforth, when 
we use the words "see," "view," and "appears" we will mean "seeing," not 
oobseiving." 
Our first goal is to separate the ordinary from the extraordinary points. Let 

g(0) = (f(0) cos 0, f(0) sin 0) denote a parametrization of the screen in terms of 0 
and let T = T(0) = g'(0) denote the unit tangent vector field to g. Let p = 1/w 

denote the reciprocal of the rotation rate co and note that the expression P?f'(O) - 

)]2 (O) is always greater than - 1. For all values of 0 such that 
W[f(o)]2? [.f'(o)]2 
-< P,f () < 1, define ap(0) = arccos(P?f' ())). Then, for each value of 0 such 

11-1(0)11 11~~~~~~~g'(0)II 
that ap( 0) is defined, let L( 0) denote the line obtained by rotating the tangent line to 
the screen at g(0) counterclockwvise through an angle of ap(0). We wvill refer to the 
lines L( 0) as separation lines. 

The next result shows that a separation line does, in fact, separate ordinary points 
from extraordinary points. 

This content downloaded from 202.28.191.34 on Sat, 23 Jan 2016 06:53:49 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


88 MATHEMATICS MAGAZINE 

THEOREM 1. Let Q denote any fixed point withiiin the region bounded by the screen 
and asstumne the beacon is rotating at somiie fixed rotation rate w. 

(a) Th-e point Q is ordinary if and only iffor each separation line L(0), Q lies on the 
side of L(H) opposite the direction of thle screen at g(H). (Thtat is, Q anrd the point 
g(H) + T(H) lie on opposite sides of L(H).) 

(b) The point Q is extraordinary if and only if there exists a separation line contain- 
ing Q. 

Proof (a) If Q = (x, y), let h.Q() = (f(O)cos 0- X)2 + (f( O)sin 0- y)2 de- 
note the distance from Q to the point g(0) on the screen. Light will leave the beacon 
heading towards g(0) at time O/w = Op, will reflect from point g(0) at time 
Op +f(O), and will arrive at point Q at time t = tQ(O) = p0 +f(O) + hQ(0). If Q is 
an ordinary vantage point then tQ(0) must be a strictly increasing function of 0. 
Therefore, t' (0) ? 0. Because the spot appears to have finite speed at all times, 'Il is 
always defined and finite. It follows from the chain rule that 

cis t (H)=ds dt = ds y[f(o)] + [p H)]2 g(H I) dt 0 i d-Od-O 

since the screen is assumed to be a regular curve. Consequently, if Q is ordinary then 
t$(O) > 0 for all values of 0. Since this reasoning can be reversed when t$(O) > 0, it 
follows that Q is ordinary if and only if 

t$(O) = p+f'(O) + h'Q(O) > 0. (4) 

Let 0Q(O) denote the angle between T( 0) and the displacement vector from g( 0) 
to Q. A little vector calculus shows that h' (0) = -I g'(0)I I cos ,Q(H) and inequality 
(4) then becomes 

t$( 0) = p +f'( 0) + 'Q( 0) = p +f'(0) - | g'( 0) ||cos Q( 0) > 0. 

Equivalently, Q is ordinary if and only if, for all 0, 

Cos ~ +f'( 0) 5 coslQ(0)< Hgf(0) (5) 

This inequality is automatically satisfied if P+ f'(O) > 1, since Q lies in the region H1g'(O)H1 
bounded by the screen. If - 1 < p?+f(O) < 1 then this inequality is satisfied if and 

IIg'(O)H1 
only if a,p(0) < ,Q(0), since the cosine is a decreasing function on the range of the 
arccosine. Geometrically this means that Q is ordinary if and only if for each 
separation line L(0), Q lies on the side of L(0) opposite the direction of the screen 
at g(0). 

(b) It follows from inequality (4) that Q is extraordinary if and only if t$(0) < 0 for 
some value of 0. Since tQ(O) > p0, t$(O) cannot be negative for all values of 0. 
Because t$(0) is a continuous function of 0, Q is thus extraordinary if and only if the 
equation t' (0) = p +f'(0) -II g'(0)fIcos OQ(0) = 0 has a solution 0. This equation 
may be written in the form cos 0,(0) = P ?fJ(O)). Since - 1 < cos ,Q(0) < 1, this 

I1g'(O)H1 
equation has a solution if and only if ap(() = ,Q(0) for some value of 0. Geometri- 
cally, this means that Q is extraordinary if and only if Q lies on some separation line 
L(H). 
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It follows from equation (3) that when the spot has a well-defined position and 

speed on the screen, the velocity of the spot is given by v(O) - tI i(O) .f v(O) > 0 
then a point Q is ordinary if and only if v(O) cos .Q(0) < 1. The reader can show that 
this condition is a consequence of the Doppler shift phenomenon. 

Theorem 1 can be used in a couple of ways to display the set of ordinar^y points. For 
example, we can sample points in the region bounded by the screen and plot those for 
xvhich inequality (4) is violated. The unshaded portion of the region will then 
approximate the set of ordinary points. FIGURE 5 depicts these approximations, at 
various rotation rates, for the ellipse r = 

I . A more efficient method is to plot a 
representative sample of separation lines. The set of points within the region belong- 
ing to no separation line is then the ordinary set. FIGURE 6 illustrates this procedure for 
the ellipse and rotation rates of FIGURE 5. 

OS 1~~~~~~~~r !af- i:14 

2 3 ~~~~~~~5 

S S 13 

FIGURE 5 
The vanishilig ellipse. 

FIGURE 6 
The vanishing ellipse (separation lines version). 
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An immediate consequence of Theorem 1 gives us some information about the 
structure of the ordinary set. 

COROLLARY 2. For every rotation rate the set of ordinary points is an open, convex 
subset of the region bounded by the screen. 

Proof. It follows from Theorem 1 (a) that the ordinary set may be obtained as the 
intersection of the convex region bounded by the screen with open half-planes 
bounded by separation lines. Since the intersection of convex sets is convex, the set of 
ordinary points must be convex. 

Define the function 3= /3(6) to be <6p() when a6p() is defined and to be 0 
otherwise. It is easy to see that /8 is a continuous function on [0,21T]. Let M(M) 
denote the line obtained by rotating the tangent to the screen at g(6) by angle /8(0) 
counterclockwise. As 0 varies from 0 to 2 IT the set of points on MM(6) whose distance 
to g(6) is no more than the diameter of the screen sweeps out a compact (and thus 
closed) subset of the plane that contains all extraordinary points and no ordinary 
points. The intersection of the (open) complement of this set with the region bounded 
by the screen is the set of ordinary points. Therefore, the set of ordinary points is 
open. 

Using inequality (4) it is easily shown that a decrease in the rotation rate of the 
beacon can never result in an ordinary point becoming extraordinary, nor can an 
increase in the rotation rate cause an extraordinary point to become ordinary. 
Furthermore, FIGURES 5 and 6 suggest that at low rotation rates most vantage points 
will be ordinary, wlhile at high rotation rates the view becomes extraordinary. The next 
result gives further details on the relationship between rotation rates and the ordinary 
set. 

PROPOSITION 3. (a) The only screens that have vantage points that are ordinary for 
every rotation rate are ellipses, with the beacon positioned at one focts. For stuch a 
configuration, the only always-ordinary vantage point is the other foctts. In every 
other case, for every vantage point Q, there is a critical rotation rate W.Q such that Q 
is ordinary for rotation rates less than W., and extraordin,ary otherwise.. 

(b) For every screen and for every position of the beacon, there exists a rotation 
rate w0 such that the set of ordinary points is the entire 'region botlnded by the screen 
precisely for those rotation, rates no greater than w0. 

(c) For every nonelliptical screen, or for every elliptical screen, for twhich the beacon 
is not located at a focuts, there exists a rotation rate w1 stuch that the set of ordinary 
points is the emripty set precisely for those rotation rates no less than W 

Proof: We assume the notation used in the proof of Theorem 1. 
(a) Let Q denote some fixed point within the region bounded by a particular 

screen. We first argue that if the function H( 6) =f(6) + hQ( 6) is not identically 
constant then there exists a rotation rate wQ such that Q is ordinary for rotation rates 
less than wQ, and extraordinary otherwise. If H is not constant then its periodicity 
implies that the minimum value of H'(0) is some negative number 'n. Define 
(oQ = 1/mIn. Then t'( 0) = p + H'(0) = 17w + H'(0) is positive precisely for rotation 
rates Ct < (OQ. In other words, it follows from condition (4) that Q is ordinary if 
Ct < WQ and extraordinary otherwise. On the other hand, the function H is identically 
constant if and only if the screen is an ellipse with foci the beacon and Q 
Furthermore, in this case t'(0) = p is a positive constant and we see that the focus Q 
is ordinary for every rotation rate. 
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(b) The set of ordinal-y points is equal to the region bounded by the screen if and 
only if there are no separation lines. This occurs if and only if P ?(() > 1 for all 0. 

Equivalently, p 2 II g'(0)II -f'(0) for all 0. But this inequality is satisfied if and only if 
p is equal to or greater than the maximum value of I g'(0)II -f'(0), for 0 in [0, 2 1r ]. 
Equivalently, the rotation rate of the beacon must be less than or equal to the 
reciprocal wo of this maximum value in order for evely point to be ordinary. 

(c) Assume that the screen is either not an ellipse or is an ellips for which the 
beacon is not located at a focus. First we argue that there exists a rotation rate for 
which the set of ordinary points is empty. By choosing w large enough, we can ensure 
that a separation line is defined for each value of 0. Then, for each separation line 
L(0), we let H(6) denote the closed half-space of points either on L(0) or on the 
opposite side of L(6) from the direction of the screen at g(6). The intersection of 
the compact set bounded by the screen and all closed half-spaces H(6) is then a 
compact subset F that contains the set of ordinary points corresponding to rotation 
rate w. If F is empty then no points are ordinary for rotation rate w) and we are done. 
Suppose then that F is not empty. Since the screen is a smooth curve, it is 
straightforNvard to show that F is contained in the interior of the region bounded by 
the screen. For any point Q in F, if the beacon has rotation rate wOQ then Q is 
extraordinary and must lie on some separation line L(6). Equivalently, for some value 
of 0, a9p() = PQ(6). It follows that if we increase the rotation rate to (OQ + 1 then ( 
will belong to the open half-space UQ of points on the same side of L( 6) as 
the direction of the screen at g(6). If Q is allowed to vary over all points in 
F, the collection of open sets {UQ} will cover F. Since F is compact, some finite sub- 
collection {UQ, UQ2'. .,UQ} of these open sets will also cover F. The maximum of 
{ t), (t)Ol + 1, (t) Q + 1. (t)Q + 1 will theen be a rotation rate for wllich the set of 
ordinary points is empty. 

For any Q in the region bounded by the screen, wQ wvill be a lower bound for the 
collection of rotation rates with empty set of ordinary points. Let w1 denote the 
greatest lower bound for this set. Then for all points Q, w?Q < w, so that for any 
rotation rate equal to or greater than 1t),, the set of ordinary points is empty. On the 
other hand, by definition of the greatest lower bound, the set of ordinal-y points must 
be nonempty for any rotation rate less than wc' 

Example 1. Consider the case of a circular screen of radius 1 with the beacon at 
the center. Then it follows from Corollary 2 and Proposition 3 (a) that for any rotation 
rate the set of ordinary points will be a nonempty open convex set containing the 
beacon. Symmetry then implies the ordinary set will be an open disk concentric with 
the screen. Since r =f(6) = 1, f'(6) = 0 and Ig'(0)II = 1, it follows from the proof of 
Proposition 3 (b) that 0o = 1. Therefore, if wt) < 1 the ordinary set is then the entire 
unit disk. If wi > 1 then simple geometry (see FIGURE 7) shows that the distance of 
each separation line to the beacon is p = 17cIw. Consequently, in this case the ordinary 
set is an open disk of radius p centered at the beacon. 

FIGURE 8 illustrates Proposition 3 (c) in the case of a convex lima5on r = 2 + cos(6). 

3. Enveloping the set of ordinary points 

We have seen that the set of ordinary points is always an open convex subset of the 
region bounded by the screen. In order to describe the shape of this set more 
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Q 

~(0) 
p 

0 

axp(O) = arccos( p) 

FIGURE 7 
A circular screen. 

FIGURE 8 
An empty set of normal points. 

precisely, we need to determine the boundary of the ordinar-y region. In general the 
boundary of a convex region in the plane will be a continuous curve that is 
differentiable alml-ost everywhere. Any point S within the region bounded by the 
screen that is on the boundary of the set of ordinary points must be extraordinary and 
thus must lie on some separation line L. Since points on the "extraordinai'y" side of L 
will be isolated from the ordinary set, if the boundar-y of the ordinary set has a tangent 
line at S, then this tangent line must be L. Consequently, within the region bounded 
by the screen the boundary of the ordinary set will be almost everywhere tangent to 
the collection of separation lines. This suggests that the boundaly of the ordinary set 
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will either be on the screen itself or will be part of the envelope of the family of 
separation lines. While FIGURE 6 seems to lend credence to this conclusion, a careful 
proof turns out to be rather delicate. 

We will sketch a proof of this result after first constructing an explicit parametriza- 
tion of an envelope for a one-parameter family of lines 5 whose angles with some 
specified curve g are known. Let g = g(s) denote a unit-speed curve with Frenet 
frame T = T(s) and N = N(s), where N is obtained from T by a counterclockwise 
rotation of 90 degrees. Assume that through each point g(s) there is a line M(s) 
parallel to W1(s) = cos a (s)T(s) + sin a(s)N(s), where a = a (s) is a smooth function 
of s. Let Y= {W(s)} denote the resulting one-parameter family of lines. Let W2 = 
- sin a T + cos a N denote the rotation of W1 90 degrees counterclock-wise and 
observe that W = (K + a')W9 and W-, =-(K + a')W1, where K = K(S) is the curva- 
ture of g. Also note that T = cos aWI - sin a W2. By an envelope for Y we will mean 
a smooth curve P = P(s), parametrized by the arclength of g, such that at any regular 
point P(s) the tangent line to P is M(s). Then, P may be written in the form 
P(s) = g(s) + Q(s)W1(s), for some smooth function Q(s) such that P'(s) is always a 
multiple of W1(s). Since 

P'(s) = T + Q'(s)W1(s) + ( K(S) + a'(s))Q(s)W9(s) 

= (Q'(s) + cos a(s))W,(s) + [( K(S) + a'(s))Q(s) - sina(s)]W9(s), 

we must have 

( K(S) + a'(s)) Q(s) -)sin a (s) = 0. (6) 

On intervals for which K(S) + a'(s) 0 0 we can solve equation (6) for Q, getting 

Q(s) = 
a ( and our envelope takes the form 

K(S) ? a'(s) ' 

P(s) =g(s) +Q(s)W1(s), 2(s)= (s a+(s) (7) 

Conversely, if K(S) + a'(s) 0 0 and P is defined by (7) then P is an envelope for Y 
(The existence of an envelope for 5 when K(S) + a'(s) = 0 is a much more subtle 
question whose investigation would take us too far afield.) 

A few examples will illustrate the usefulness of parametrization (7). 

Exam-tple 2. Recall that the general solution y = nx +?f(m) to Clairaut's differen- 
tial equation, y = xy' +f(y ') may be interpreted as a one-parameter family of lines in 
which the parameter is the slope of each line. The singular solution of Clairaut's 
equation is the envelope of this family of lines and can be parametrized by the pair of 
equations x = -f'(t) and y = - tf'(t) +f(t). On the other hand, we could consider a 
one-parameter family 5 of lines y =f(b)x + b in which the parameter is the 
y-intercept of each line. The corresponding variant of Clairaut's equation is then 
given by 

y =f( y - XY') (8) 

Using the parametrization (7) we can obtain the envelope of 57 In this case the curve 
g(s) = (0, s) has curvature identically 0, T = j, N = - i. We assume without loss of 
generality that our spanning vector W1 always has negative i component. Then our 
angle function a(s) satisfies the equations sin a = g , cos a = - - f 

a ct =-(.ie ==f2 w l r tf2 
and cot a (s) = -f(s). Since a' = and K + a' = a' ' we will restrict 

1?f 2 1?+f 2 
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attention to intervals over whlich f'(s) 0 0. Then Q = and W1 = 

/ i + fi Substitutionl into our expressionl (7) for P(s) yields P(s) = 
-( l+f2 P 

Pf(s) S f' S)4. It can be checked directly that the equations x = - fP(s) and 
y= s- _ -9) parametrize a singular solution to (8). (The reader is invited to solve (8) 
in the manner of Clairaut's eqLation by making the change of variables s = y - xy'.) 

Exaimple 3. Fix a pair of positive integers q < p and take g(s) = (cos s, sin s) to be 
the unit-circular immersion of the s-axis into the plane. Define 9 to be the family of 
chords between g(s) and g(P?=). FIGURE 9 displays 9 for (p, q) = (2, 1) and 

(p, q) = (9, 4). The central angle of each chord has measure 8s= (- - qs) from 
qq 

which it immediately follows that the angle a(s) between the chord and the unit 
tangent T at g(s) has measure a(s) = (2 q) s. Since the unit tangent T makes an 
angle of s + 7'/2 with the horizontal, our spanning vector W1(s) nlakes an angle of 
s + r/2 + ( 2 q)5 -= /2 + ( 2+ q) s with the horizontal. Therefore, 

W1(s) = cos (./2 + (p2+q) s)i + sin ( 7/2 + (p+q)j 

= -sin ( (P+q) s)i + cos ( q) s)i. 

Since a'(s)= (P - q) and K= 1, we conlpute that 
2q 

silln pq-)q _ 2qsin (p97js) 
Q(s)= 1+ 

pq 
p q 

2ql 

Equation (7) for the envelope then becomes (after using the identities sin A sin B = 

.cos(A - B) - 'cos(A + B) and sin Acos B = 'sin(A + B) + 'sin(A - B)) 

cos s+ q cos (Ps) psinss+qsin (s) 

P( s) =g( s) + Q( S)W1( s) 1, P+ 
q 

? p+ 

q 

(p, q) = (2, 1) ( , q ) = (9? 4) 
FIGURE 9 

Families of clhords in a circle. 
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Since P'(s) = (Q'(s) + cos a (s)) W1(s), to find the cusps of this envelope we must 
find the solutions to 

Q'(s) + cos a(s)= ?p q cos a(s) + cos a(s)= p p cos a(s) = o. 

It follows that cusps occur for s = (2ii - I)q =_ (2- - 1) q'=, p'-q', where p' p -q p~ -q 
and q' are the quotients of p and q by the g.c.d. of p and q. This fact has an 
interesting interpretation in terms of a spirograph [4]. 

Examnple 4. Suppose g is the ellipse r =f(0) = ? A o Of eccentricity e, with left 
focus F1 and right focus the origin F2, oriented counterclockwise. Let s denote 
arclength along g and express 0 as the function 0 = 0(s). Define 9 to be the 
one-parameter family of lines through F1 and g(0) = (f(0)cos 0, f(0)sin 0) 
parametrized by s. A spanning vector field W1(s) for 9 is obtained by rotating the 
oriented unit tangent T to g at g(0) counterclockwise through an angle a = a(s) 
such that cos a(s) = f'(0) . The point curve P(s) = F1 may be written in the 

if (0) +f(0)2 
form F1 = P(s) = g(0) + Q(s)W1(s) where Q(s) is the distance from g(0) to F1. It is 
clear that P is an evelywhere singular envelope of 9 and it then follows from 
equation (6) that (i) (K(S) + a'(s))Q - sin aQ(s) = 0 for all values of s. Since sin a(S) = 

f(0) + 0, (i) implies K(S) + a'(s) 0 0. (We will need this result later.) 
Vf'(0) +f(0)2 

Because 0 = P'(s) = (Q'(s) + cos a(s))W1(s) it follows that (ii) Q'(s) + cos a(S) = 

Q'(s) + f (0) = 0. Both (i) and (ii) correspond to geometrical properties of 
if'(0)2 +f(0) 

an ellipse, the second well-known and the first less-known. Since Q(s) is the distance 
from g(s) to F1 and Q'(s) = Q'(0) equation (ii) is equivalent to the defining 

if'(0) + f(0)I 
property that the sum of the distances from any point on the ellipse to the two foci is a 
constant. Equation (i) also has an interesting geometrical interpretation. Let , = 8(s) 
denote the angle T makes with the horizontal and let y(0) denote the angle that the 
ray from F1 through the point r =f(0) makes with the horizontal (i.e., y is the angle 
of elevation of points on the ellipse with respect to the left-hand focus F1). Then, in 
terms of the notation above, a + , = y + 7r. Differentiating both sides of this 
equation with respect to s and using equation (i) together with the fact that 

K(S) = 8'(S) yields y'(s) = siQ(s) Since sin a (s) = i f(0 ) and Y'(s) = 

'Y (0) we have y'(0) = f . In other words, the rate at which y is changing 
lIf'(0)2 +f(0)2 
with respect to 0 is equal to the ratio of the distances to the two foci of the 
corresponding point on the ellipse. 

We now return to the family of separation lines associated to our rotating beacon 
problem. Since ap is a smooth function defined on open 0 intervals, we may use (7) 
to parametrize the envelope of this family. 

Example 5. Consider again Example 1 and assume the rotation rate w is greater 
than 1. We argued previously that the set of ordinary points is then the open disk 
centered at the origin of radius p = 17w. Furthermore, it is clear that in this case the 
boundaly of this disk is also an envelope for the family Y of separation lines. We 
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see from FIGURE 7 that this disk has a parametrization P(O) = p(cos (0 +ap()), 
sin (0 + axp(0)). We can confirm this observation using our parametrization (7). We 
have, r =f(0) = 1, K = 1, cos a(s) = p, Q(s) = sin a(s) = 1 p2, and W1(s)= 

pT + V/1 - p2 N where T -sin Oi + cos Oj and N =-cos Oi - sin Oj. Substitution 
into equation (7) yields 

P(0) = (p2cos 0-p/1 -p2 sin 0, psin 0 + p -p2cos 0). 

We showed in Example 1 that aop(0) is the constant arccos p. It immediately follows 
from the addition formulas for sine and cosine that P( 0) = p(cos (0 + aog 0)), 
Sill ( O + ap( 0)). 

Next we wish to show that the boundary of the set of ordinary points is a subset of 
the union of the screen with the envelope for the family of separation lines. 

THEOREM 4 . Let S denote a boundary point of the ordinary set. Thlen S is either on 
the screen or on thle enivelope of the fame>.ily of separation lines. 

Proof Because a complete proof of this result is rather lengthy, we will merely 
sketch the argument. Suppose S is a boundaiy point of the set of ordinaiy points that 
does not belong to the screen. Then there is a separation line L(s) through some g(s) 
that contains S. Assume without loss of generality that s = 0 and consider the 
separation line L = L(s) through g(s) for a negative value of s veiy close to 0. Since 
g(O) will then belong to the extraordinai-y side of L(s), L(s) must intersect L(O) 
either at the point S or at a point between S and g (0) in order that S not be on the 
extraordinary side of L(s) and thus isolated from the set of ordinary points. WVe let 
A(s) denote the intersection of L(s) and L(O) for s a negative number close to 0. 
Likewise, for s a very small positive number, the intersection B(s) of the separation 
line L(s) with L(O) must either be at S or S must lie between B(s) and g(O). (See 
FIGURE 10 for a typical picture.) It can be shown that the existence of boundaiy point 
S implieS K(0) + a>(0) > 0 so that an envelope P = P(s) for the family of separation 
lines is defined for values of s near 0. An envelope for a family of curves is sometimes 
referred to as the locus of intersections. What this means for our family 9 of 
separation lines, is that as s approaches 0, both A(s) and B(s) approach the point 
P(O) on the envelope of g Since S is always "betveen" A(s) and B(s), the squeeze 
theorem implies S = P(O) and S is on the envelope. 

g(0) 

B(s)/ 
L(O) 

FIGURE 10 
Intersecting separation lines near a boundaiy point S. 
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It follows from Theorem 4 that to understand the "shape" of the set of orclinaiy 
points, it suffices to understand the shape of the envelope. In the next section we Nvill 
discover a surprising interpretation of this shape in the case of an elliptical screen. 

4. Interpreting a fishy-looking envelope 

VVe saw in PROPOSITION 3(a) that the only scenario for which there is a nonempty set 
of ordinaiy points at arbitrarily high rotation rates is an elliptical screen with the 
beacon located at a focus of the ellipse. In other words, for no other case will the set 
of ordinaiy points display interesting "asymptotic" behavior at high rotation rates of 
the beacon. 

FIGURE 11 illustrates the effects of an increasing rotation rate c on the envelope of 
separation lines for the ellipse r = + . We see that one effect of the rotation rate 2eQcs 0 
is upon the size of the envelope. As the rate increases the envelope appears to shrink 
to the second (non-beacon) focus of the ellipse. In fact, a straightforward continuity 
argument using equations (7) shows this to be the case whenever the beacon is at a 
focus of an elliptical screen. 

A more subtle effect of the rotation rate is upon the shape of the envelope. Note 
that in FIGURE 11 as the rotation rate c increases, the envelope becomes more 
symmetric and appears to rotate towards a vertical axis of symmetry. It also appears 
that the influence of the rotation rate upon the shape of the envelope becomes less 
pronounced as w increases. In this regard, it is instructive to plot the envelopes 
corresponding to relatively large rotation rates. FIGURE 12 displays Matheniatica plots 
of the envelopes for w = 100 and w = 1000. At first glance the two envelopes appear 
to be the same curve. However, by inspecting the scale of the two plots we see that 
the envelope that corresponds to w = 1000 is actually 10 times smaller than the 
envelope for w = 100. Consequently, it appears that for large values of c the shape of 
the envelope stabilizes while the si.ze of the envelope becomes a linear function of 
p = 17w. Such (approximate) linear behavior suggests that we are viewing some kind 
of derivative. 

Let us fix an elliptical screen E with foci F1 and F2 and assume the beacon is 
located at F9. Let P(0, p) denote the envelope for the family of separation lines 

.8) 1 X 1.4 

FIGURE 11 
The vanishing ellipse (envelope version). 
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0.015 

0.0102 

0.0052 

-0.675 -0. 0.66 -0.655 -0.6.5 

0.0025 \/ 

0.002 Y ct) = 1000 

0.0015 

0.001 / 

0.0005 

-0.667 -0.666 -0.665 
-0.6675 -0.6665 -0.6655 

FIGURE 12 
Same or different? 

through E corresponding to a rotation rate of w = i/p. When p= 0 the family of 
separation lines becomes the family 9 of Example 4 which has the everywhere 
singular envelope P(0, 0) = F1. The argument in Example 4 shows that K(S) + 
d a(s,0) 0 0, from which it follows that for values of p near 0 a separation line is 
defined for each value of 0 and we have K(S) + da (s, p) 0 0. We will restrict 
attention to such values of p throughout the remainder of this paper. We then expect 
P(O, p) Fl + p8P(0, 0) for values of p close to 0. This suggests that for large 
rotation rates, the shape of the envelope will be approximately that of the curve 
0-- 2(0, 0). FIGURE 13 shows that a Mathemiatica plot of this curve is in agreement 
with the expected shape. 

Next, we wish to determine why the curve 0 -- 9 (0, 0) has the shape of an 
inverted, stylized "fish." An important clue is provided in FIGURE 14, which is taken 
from page 133 of Curves anid Singularities, by J. W. Bruce and P. J. Giblin [2]. The 
family of lines in the figure consists of the perpendicular bisectors of segments joining 
the left focus of the ellipse (the "eye" of the fish) to points of the ellipse. The 
envelope of this family of lines is called an antiorthotornic of the ellipse. (The locus of 
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3- 

2.5, 

2% 

0.5, 

-1.5 -1 -0.5 0.5 1 i.5 

FIGURE 13 

The partial derivative curve (0,0). O9p 

reflections of a fixed point in the tangent lines of some curve is known as an 
orthotomic of the curve. By construction, the orthotomic of the "fish" curve with 
respect to the left focus of the ellipse is the ellipse itself. Hence, this fish-shaped 
curve is known as an antiorthotomic of the ellipse.) The similarity in shapes suggests 
that the curve 0 -> CP(0, 0) is an antiorthotomic of some ellipse. While our elliptical 
screen is an obvious candidate, some experimentation with Mathematica shows that, 
in general, the curve 0 -> 'p ( 0, 0) has neither the size nor the shape nor the 

ap 
orientation of an antiorthotomic for our screen. Nonetheless, the similarity in shapes 
between our partial derivative curve and the antiorthotomic of an ellipse is so close 
that it would be a mistake to dismiss some sort of connection behveen the two. In 
order to make this connection, we need first to present a natural transformation of any 
ellipse into a second ellipse. 

FIGURE 14 
The antiorthotomic of an ellipse (p. 133 of Cuorves anid Singularities, by J. W. Bruce and 
P. 1. Giblin). 
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Suppose F1 and F2 denote the foci of an ellipse E in the plane. We let F1(E) 
denote the set of points that results if each point on E is scaled "away" from F1 by 
the reciprocal of its distance to F2. More precisely, a point Q is in F1(E) if and only if 
there exists a point P on E such that Q is the image of P under the dilation with 
center F1 and ratio 1/dist(F2, P). Note that when E is a circle then F1(E) is simply 
the unit circle concentric with E. Furthermore, it is easy to see that if E and E' are 
similar ellipses with F1 a focus of E and F{ a focus of E', then F1(E) is congruent to 
FK(F'). We can therefore think of the transformation E -> F1(E) as an "elliptical" or 
"two-point" generalization of unit normalization. Of particular significance is the fact 
that the elliptical transform of an ellipse is again an ellipse. 

PROPOSITION 5. If F1 is a foctts of an ellipse E of eccentricity e, then F1(E) is an 
ellipse with one focus at F1 and eccentricity 1 2e 

Proof. Let F1 and F, denote the foci of E and choose a system of polar 
coordinates with pole at F1 and initial ray F1F2. Without loss of generality it may be 
assumed that E has a polar equation of the form r =f(e) = - A for some 
positive constant A. Suppose P is the point r =f(e) on E. Then f(e) = dist(Fl, P) 
and dist( F1, P) + dist( F2, p) = 2. Consequently, 

dist(F2, p) 2A _ f( )=2A(1-ecos0)-A(1-e 2) dist(F2P) i-e 2 f() (1-e 2 ) (- ecosO0) 

and a little algebra shows that the image of P under the dilation with center F1 and 
ratio 1/dist(F9, P) is a point whose distance to F1 is 

(1-e2)/(i + e2) 

1-2ecos 0/(1 +e2) 

This is the polar equation of an ellipse with a focus at F1 and with eccentricity 1 2 

We have already observed that the similarity class of E determines the congruence 
class of F1(E). In fact, it is straightforward to show that F1(E) is the unique ellipse 
with eccentricity Se 2 a focus at F1, center on ray F1 F2, and semiminor axis 1. 
FIGUIRE 15 illustrates the effects of this transformation on several choices of E. Our 
next goal is to relate the partial derivative curve 0e-> kp(e,0) with the elliptical 
transformation of our screen. 

THEOREM 6. Let P(e, p) denote the envelope of the family of separation lines 
associated to a rotating beacon problem within an elliptical screen of eccentricity e, 
beacon at a fixed focus of the screen, and rotation rate X = l/p. The cutrve 81P (0, 0) is 
then acn. antiorthotomnic of an ellipse of eccentricity 1 2e and ci semiminor axis 2. 

Fttrthermnore, this antiorthotomnic has an axis of symmznetry orthogonal to the milajor axis 
of the elliptical screen. 

Proof. Assume that g(s) is a unit speed parametrization of an elliptical screen vith 
the beacon at the right-hand focus FI, Frenet frame T and N, and curvature K. Let 
a(s, p) = ap(s) denote the angle between T and the separation line through g(s) 
that corresponds to a rotation rate of wo= I The vector field W1 = W(s, p) = p 
cos a T + sin a N is then a spanning vector field for the family of separation lines 
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FIGURE 15 
Transforming an ellipse E into a second ellipse F1(E). 

corresponding to rotation rate w. Define W2 = W9(s, p) = -sin a T + cos a N. Then 

dW1 = W Ao , and = K= (K+ dAs (9) 

Likewise, 

dW9 = __daWi and d = -(K+ da) 1. (10) 

It follows from (7) that for fixed p, 

P( s, p) = g ( s) + Q( s, p)W1( s, p), Q(s, P) = si a da K + d 

is an envelope of the corresponding family of separation lines. We wish to show that 
8'P(s, 0) is an antiorthotomic of an ellipse. Using the equations above, we have 
O?p 
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We will first show that the tangent vector - (S, 0) to dp(s, 0) is a multiple of 
W(s, 0). Differentiating both sides of equation (11) with respect to s and using 
equations (9) and (10), we have 

~~=(~~~-Q~~ h1K?~~~~~ h1~~~~~ + ~ + l 
~ ds dp (ds p Qdp( + ds)W+ dp (K ds) ds dp +(dsdp)W 

It suffices to show that the coefficient of WV vanishes when p = 0. By definition, 
(K + la)Q - sin a = 0, identically. Differentiating both sides of this equation with 
respect to p yields (K + cd ) Q + d- a (cos a) da = 0. Equation (ii) of Example 4 c? s cp cYpcs dp 
implies d (s, 0) =-cos a (s, 0). Replacing - cos a by d (s, 0) we see that the 
coefficient of W4s, 0) is indeed 0. As a result, we have shown that at nonsingular 
points, the tangent line to the curve ?dp(s, 0) is parallel to the line 
through g(s) and the non-beacon focus F1 of the ellipse. (Recall that all the 
"separation lines" pass through F1 when p = 0.) 

It follows that the translate F1 + dp(s, 0) is an envelope for the family of lines 
5= {M(s)} where M(s) is the line through F1 + p (s, 0) parallel to the line through 

Op 
F1 and g(s). On the other hand, we are endeavoring to also show that this curve is the 
antiorthotomic of some ellipse. Consider the locus of reflections of the non-beacon 
focus F1 through every line in X Since W,(s, 0) is parallel to M(s) and since 
dP = dW1 

? Q 
d WQ , M(s) will be located a distance of I (S, ?) d fromii F1. 

op OpI p 

We saw in Example 4 that Q(s, 0) is the distance from g(s) to F1. From the definition 
of a separation line we know that 

cos= a (12) 
v~T2 ?f2 fji2 ?f 2 

where r =f() is the polar equation of the ellipse. It follows that cos a(s, 0) = 
fl (0) ,; we then also have sin a (s, 0) - f(O) Differentiating both 

p2(O) +f2(0) f'(0) +?f2(0) 

sides of equation (12) with respect to p yields the equation (- sin a) p - 

Solving, we find that 
C 

f 

dot s O) = -1 -1 
dp ~sin a (s, 0) _1f12?1 f2 _T 

Therefore, the distance from F1 to the line M(s) is the ratio Q(As ) of the distance 

from g(s) to F1 to the distance from g(s) to the beacon FI,. Furthermore, we know 
that M(s) is parallel to the line through g(s) and F1 and is on the side of this line 

opposite the direction of W9(s, 0) (since Q(s, 0) la (S, 0) -= Q(I I ?) is negative). op A(s) 

Consequently, the operation of reflection of F1 through M(s) yields the same point as 
the operation of first scaling g(s) "away" from F1 by twice the reciprocal of the 
distance from g(s) to F2, then rotating this scaled point 90 degrees counterclockwise 
about F1. If this operation is applied to each point g(s) on the elliptical screen, the 
resulting collection of points is the orthotomic (with respect to F1) of the (translated) 
partial derivative curve F1 + 8p (s, 0). Scaling by twice the reciprocal simply makes the 

op 

orthotomic twice as big as scaling by the reciprocal, and the only effect of rotating 90 
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degrees about F1 is to change the orientation of the orthotomic. Thus, it immediately 
follows from Proposition 5 that this orthotomic is an ellipse and the translate 
F + ?P (s, 0) is an antiorthotolmiic of this ellipse. Therefore, dP (s, 0) is an antiortho- I 8p dp 

tomic for a translate of this ellipse. 

6 

5 

4 

-2 -1 10 2 

FIGURE 16 

The curve dp (0, 0) is the antiorthotomic of an ellipse. 

FIGURE 16 illustrates Theorem 6 in the case of the elliptical screen r = 2+ . 

5. Further questions and conclusions 

Theorem 6 answers our question about the "shape" of the partial derivative curve 
p (s, 0). Perhaps the next natural problem would be to determine the shape of the 

higher order partial derivative curves dd (s, 0). For example, FIGURE 17 shows the 
partial derivative curves corresponding to n = 1, 2, 3 and 4 for the ellipse r = 2 + c 0 

Inspecting FIGURE 17 one might suspect that the odd order partial derivative curves 
have an axis of symmetry orthogonal to the major axis of the elliptical screen, while for 
the even order partial derivative curves the (extended) major axis of the screen is an 
axis of symmetry. A careful bookkeeping of the even and odd functions that appear in 
the expressions for the partial derivative curves shows that this is indeed the case. 
Unfortunately, the authors have had no success in intelrreting the shape of these 
higher order partial derivative curves. Do there exist geometrical interpretations 
analogous to that in Theorem 6? 

The global behavior of the envelope for a family of separation lines is worthy of 
further study. For example, it can be shown that if the envelope has self-intersections 
then some type of singular behavior (cusps, running off to infinity, etc.) must occur. 
What other results of this type are there? (In this regard, we intentionally avoided the 
consideration of singularities in our parametrization. What can be said if singularities 
are allowed?) 
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0 2 

0 

0 _10 500 

FIGURE 17 

The curves (0, 0), for ii = 1, 2, 3, and 4. 

To conclude, we hope to have shown the reader that the rotating beacon problem is 
not simply an "old chestnut" located somewhere in the related rates section of his or 
her calculus textbook. Indeed, the authors have found the study of this problem to be 
a source of surprising connections between calculus and geometry. We hope that 
some reader will be inspired to continue the study of these connections. 
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A Historically Focused Course 
in Abstract Algebra 
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Introduction 

I propose to describe a course in abstract algebra which I taught in an In-Service 
Master's Programme for Teachers of Mathematics at our university. Students do not 
follow this course with another in abstract algebra, so I was fortunate in not having to 
worry whether I had covered this or that material for the next algebra course. This 
presented an opportunity and a challenge: What are some of the major ideas of 
abstract algebra that I would want to impart? Wh-at algebraic legacy would I want to 
leave the students with? Since the students were high school teachers of mathematics, 
I wanted the course also to have at least broad relevance to their concerns as teachers. 

All this suggested to me that the history of mathematics should play an important 
role in the course. History points to the sources of abstract algebra, hence to some of 
its central ideas; it provides motivation; and it makes the subject come to life. 

To set the context for the course, here is a history of abstract algebra-in 100 words 
or less. 

Prior to the 19th century algebra meant essentially the study of polynomial 
equations. In the 20th century algebra became the study of abstract, axiomatic systems 
such as groups, rings, and fields. The transition from the so-called classical algebra of 
polynomial equations to the so-called modern algebra of axiom systems occurred in 
the 19th century. Modern algebra came into existence principally because mathemati- 
cians were unable to solve classical problems by classical (pre-19th century) means. 
They invented the concepts of group, ring, and field to help them solve such problems 
[2], [4], [14], [16], [17], [27], [28]. 

This mini-history of algebra suggests the major theme of the course, namely 
showing how abstract algebra originated in, and sheds light on, the solution of 
"concrete" problems. It is a confirmation of Whitehead's paradoxical dictum that "the 
utmost abstractions are the true weapons with which to control our thought of 
concrete fact" [18, p. 466]. What I do in the course can be represented schematically 
as follows: 

Prolem ASolutions of original problems 
Problemus -> Abstractions 

Solutions of other problems 

The item "Solutions of other problems" is intended to convey an important idea, 
namely that the abstract concepts whose introduction was motivated by concrete 
problems often superseded in importance the original problems which inspired them. 
In particular, the emerging new concepts and results were employed in the solution of 
other problems, often unrelated to, and sometimes more important than, the original 
problems which gave them birth. I will call the solutions of such problems "payoffs." 
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PROBLEM I. WVhy is (- )- 1) = 1? 

This problem is an instance of the issue of justification of the laws of arithmetic. It 
deals with relations between arithmetic and abstract algebra, and it leads the students 
to the concepts of ring, integral domain, ordered structure, and axiomatics. 

The above problem became pressing for English mathematicians of the 19th 
century, who wanted to set algebra-to them this meant the laws of operation with 
numbers-on an equal footing with geometry by providing it with logical justification. 
The task was tackled by members of the Analytical Society at Cambridge [21]. We will 
focus on Peacock's work, Treatise of Algebra (1830), which proved the most influen- 
tial. 

Peacock's major idea was to distinguish between "arithmetical algebra" and "sym- 
bolical algebra." The former referred to operations involving only positive numbers, 
and hence in Peacock's view required no justification. For example, a - (b - c) = 
a + c - b is a law of arithmetical algebra when b > c and a > (b - c). It becomes a 
law of symbolical algebra if no restrictions are placed on a, b, and c. In fact, no 
interpretation of the symbols is called for. Thus symlbolical algebra is the 
subject-newly founded by Peacock-of operations with symbols which need not 
refer to specific objects but which obey the laws of arithmetical algebra. Peacock's 
justification for identifying the laws of symbolical algebra with those of arithmetical 
algebra is his Principle of Permanence of Equivalent Formts (a type of Principle of 
Continuity going back at least to Leibniz): 

Whatever algebraic formls are equtivalent twheien the symlbols are general in 
forn but specific in valtue, twill be equivalent when. the symbols ar:e general 
in value as twell as in form. 

Thus Peacock decrees that the laws of arithmetic shall also be the laws of 
(symbolical) algebra-an idea not at all unlike the axiomatic approach to arithmetic. 
For example, we can use Peacock's Principle to prove that (- x)( - y) = xy, as follows. 

Since (a - b)(c - d) = ac + bd - ad - bc whenever a > b and c > d, this being a 
law of arithmetic and hence requiring no justification, it also becomes a law of 
symbolical algebra-that is, without restrictions on a, b, c, d. Letting a = 0 and c = 0 
yields (- b)( - d) = bd, and completes the proof. 

The significance of Peacock's work was that symbols took on a life of their own, 
becoming objects of study in their own right rather thaan a language to represent 
relationships among numbers. Some have said that these developments signalled the 
birth of abstract algebra [2]. 

We now make a seventy-year leap forward and take a modern, Hilbertian approach 
to the above topic. The idea is to define (characterize) the integers axiomatically as an 
ordered integral domain in which the positive elements are well ordered ([19], [24]), 
just as Hilbert (in 1900) characterized the reals axiomatically as the maximal 
archimedean ordered field [3], [11]. Of course, in the process we must define the 
various algebraic concepts that enter into the above characterization of the integers. 
We can then readily prove such laws as (- a)( - b) = ab and a X 0 = 0. This was done 
in the more general context of rings by Fraenkel in 1914 [4], [7]. 

Payoffs: The following issues arise from the account above: 

(a) How can we establish (prove) a law such as (- i)(- 1) = 1? This question leads 
to axioms. We cannot prove everything. 
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(b) What axioms should we set clown to give a description of the integers? This 
question enables us to introduce the concepts of ring, integral domain, ordered 
ring, and well ordering (induction). 

(c) How do we know when we have enough axioms? Here we introduce the idea of 
completeness of a set of axioms. 

(d) WXhat does it mean to characterize the integers? This sets the stage for the 
introduction of the notion of isomorphism. 

(e) Could we have used fewer axioms to characterize the integers? For example, 
a + b = b + a is not needed. Here we come face to face with the concept of 
independence of a set of axioms. 

(f) Are we at liberty to pick and choose axioms as we please? This question permits 
us to introduce the notion of consistency, and more broadly, the issue of 
freedom of choice in mathematics. 

The innocent-looking problem (- 1)(- 1) = 1 can be a rich source of ideas! 

PROBLEM II. What are the integer solutionis of x2 + 2 = y3? 

This diophantine equation is an example of the famous Bachet equation x 2 + k = y3, 
introduced in the 17th century and solved only recently for arbitrar-y k. The problem 
deals with relations between number theory and abstract algebra, and it gives rise to 
the concepts of unique factorization domain and euclidean domain-important exam- 
ples of commutative rings. 

We begin with a simpler problem, namely to solve the diophantine equation 
x2 + w= z, with (x, y) = 1, that is, to find all primitive Pythagorean triples. Al- 
though the solution was known in ancient Greece over 2000 years ago, if not earlier, 
we are interested in an "algebraic" solution-a legacy of the 19th century. 

The key idea is to factor the left side of x2 + = z2 and tlus obtain the equation 
(XA + y5i)(x -'i) = z2 in the domain G = {a + bi: a,b E E} of Gaussian integers. This 
domain shares with the integers the property of unique factorization. In particular, 
since x + yi and x - yi are relatively prime in G (this follows because x and y are 
relatively prime in Z) and their product is a square, each is a square (in G). Thus 
x + yi = (a + bi)2 = (a2- b2) + 2abi. Comparing real and imaginary parts yields x = 
a2 - b 2, y = 2ab, and since x2 + - = a2 + b Conversely, it is easily shown 
that for any a, b E T, (a2-b 2, 2ab, a2 + b 2) is a solution of X2 + y 2 = 72. We thus 
get all pythagorean triples. It is easy to single out the primitive ones among them. 

Coming back to x2 + 2 = y', we proceed analogously by factoring the left side and 
get (x + v2 i)(x - v2i) = y3, an equation in the domain D = {a + bF2 i: a, b E E}. 
Here, too, we can show that (x + y2i, x_ - 2i) = 1, hence x + V2i and x - Fi are 
cubes in D. In particular, x + V;i = (a + bF/ i)3. Simple algebra yields x = +5, 
y = 3. Of course it is easy to see that these are solutions of xi + 2 = y3. What the 
argument above shows is that they are the only solutions, 

The Fermat equation x3 + = can be dealt with similarly: 3 =x 3+ y3 
(x + y)(x + yw)(x + yw 2)-an equation in the domain E = {a + bw: a, b E X, w a 
primitive cube root of 1). The technical details are more complex here [1], [9]. 

Justifying the "details" in the solutions of the three diophantine equations above 
involves considerable work. In particular, we need to introduce the notions of unique 
factorization domain (UFD) and euclidean domain and to discuss some of their 
arithmetic properties. The three diophantine equations can be solved in the indicated 
manner because the respective domains G, D, and E in which they were embedded 
are UFDs. 
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Payoffs: 

(a) We can solve Fermat's problem about the representability of integers as sums of 
two squares by a careful scrutiny of the primes in the domain G of Gaussian 
integers [9], [20]. 

(b) In arithmetic domains in which unique factorization fails we introduce, follow- 
ing Dedekind, ideals. We can thereby obtain a proof of Fermat's Last Theorem 
-the unsolvability in integers of x P + y P = z. P-for all p < 100 [20]. Here 
appear the elements of a rich subject-algebraic number theory. The subject 
originated to a large extent in attempts to solve such diophantine equations as 
we have considered above, in particular the Fermat equation [14]. 

PROBLEM III. Can wve trisect a 60'" angle uising only straightedge and comnpass? 

This is an instance of one of the three famous classical construction problems going 
back to Greek antiquity. It deals with relations between geometry and abstract 
algebra, and it leads the students to the concepts of field and vector space. This is a 
standard problem, usually given following the presentation of Galois theory. I put it 
centre-stage as a means of providing a "gentle" introduction to fields. 

The problem of trisection was posed about 2500 years ago but solved only in 1837, 
by Wantzel, following the introduction of the requisite algebraic machinery. One must 
persevere! 

The initial key idea was the translation of the geometric problem into the language 
of classical algebra-numbers and equations. This occurred in the 17th century. Thus 
the basic goal became the construction of real ntwnbers, often as roots of equations. 
("Construction" will henceforth mean "construction wvith straightedge and compass.") 
How do fields and vector spaces enter the picture? 

If a and b are constructible, so are a + b, a - b, ab, and a/b (if b 0 0)-all this is 
easy to show. Thus the constructible numbers form a field. But what are they? 

Given a unit length 1, the above imuplies that we can construct all rational numbers 
G. We can also construct, for example, 2, as the diagonal of a unit square. More 
generally, if a is constructible, so is v/;. We can therefore construct the field 
QG1a) = {p + qx/: p, q G ?1. This introduces the important notion of field adjunc- 
tion. The objective is to show that all constructible numbers can be obtained by an 
iteration of the adjunction of square roots. 

To proceed we need a numerical measure of how far QG(a) is removed from G. 
This leads to the concept of degree of a field extension, here the dimension of QG(a) 
as a vector space over G. The problem of trisection is next phrased in terms of fields. 
This is now late-19th-centuwy abstract algebra. Enough machinery of field extensions 
is introduced-and not much more than that-to solve the trisection problem [12]. 

A word about history versus genesis. Wantzel solved the trisection problem in 1837, 
essentially as we do: he reduced the problem to the solution of polynomial equations; 
introduced irreducible polynomials and rational functions of a given number of 
elements; and he derived conditions for constructibility in terms of the iteration of 
solutions of polynomial equations [30]. Although Wantzel's approach is similar in spirit 
to the modern one, he used neither fields nor vector spaces. We use both. Our 
approach in this course is genetic rather than strictly historical when this serves our 
purpose. 

Payoffs: 

(a) A characterization of the real numbers as a complete ordered field [3]. 
(b) A discussion of algebraic and transcendental numbers [8], [20]. 
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(c) A characterization of finite fields [10], [19]. 
(d) Proof of a special case of Dirichlet's theorem on primes in arithmetic progres- 

sion, namely that 1, 1 + b, 1 + 2b, 1 + 3b,... contains infinitely many primes. 
For this we need cyclotomic field extensions [8]. 

PROBLEM IV. Can twe solve x5 - 6x + 3 = 0 by radicals? 

Problem-s such as this, dealing wvith the solution of equations by radicals, gave rise to 
Galois theory. They touch on the relations between classical and abstract algebra. 

Galois theory, in its modern incarnation, is a grand symphony on two major themes 
-groups and fields, and two minor themes-rings and vector spaces. Galois theory is 
thus a highlight of any course in abstract algebra. But to do it in detail would take 
almost an entire term. Moreover, the proofs of theorems are often long and some- 
times tedious, and the payoff is long in coming. The intent in this course, then, is to 
get across some of the central ideas of Galois theory (such as the correspondence 
between groups and fields and what it is good for) often with examples rather than 
proofs. 

We begin where the history of the subject begins: with Lagrange. Lagrange 
analyzed past solutions of the cubic and quartic to see if he could find in them a 
common method extendible to the quintic. Although he did not resolve the problem 
of solvability of the quintic by radicals, he did light upon a key idea, namely that the 
permutations of the roots of a polynoomial equation are the "inetaphysics" of its 
solvability by radicals [17], [27]. 

I try to give students a sense of Lagrange's ideas by showing how permutations of 
the roots of cubic and quartic equations help solve them by radicals [5], [6], [27]. 
Implicit in this is the notion of a group. 

Although the Fundamental Theorem of Galois Theory is not needed to resolve the 
problem of solvability of the quintic, we do discuss the theorem, illustrating it with 
examples. It is a beautiful and important result, and it has nice applications-payoffs 
-aside from solvability by radicals. 

Payoffs: 

(a) Proofs of several important number-theoretic results: Fermat's "little" theorem, 
Euler's theorem, Wilson's theorem. The proofs use only very elementary group 
theory [23]. 

(b) Classification of the regular polygons constructible with straightedge and comn- 
pass. Although Galois theory yields a rather quick solution [25], the problem 
can be resolved using some field theory (cyclotomic extensions) and very 
elementaiy group theory [23]. 

(c) An essentially algebraic proof of the Fundamental Theorem of Algebra [25]. 

(d) Proof of the irrationality of expressions such as 3 + + 672 [22]. 

PROBLEM V. "Papa, can you mlultiply triples?" 

This problem deals with extensions of the complex numbers to hypercomplex 
numbers, for example, the quaternions. The question in the title was asked by 
Hamilton's sons of their father to inquire whether he had succeeded, after years of 
effort, in obtaining an algebra of triples of reals analogous to the complex numbers. 
The problem bears on relations between arithmetic/classical algebra and abstract 
algebra, and it gives rise to the concepts of an algebra (not necessarily associative) and 
a division ring (a skew field). 
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To set the scene, I give the students a brief history of complex numbers. An 
important point to keep in mind here is that complex numbers arose in connection 
with the solution of the cutbic rather than the quadratic [15]. 

Hamilton's quaternions-a noncommutative "number system" -was conceptually a 
most important development, for it liberated algebra from the canons of arithmetic 
[16]. The histoiy of their invention in 1843 is well documented and gives a rare 
glimpse of the creative process at vork in mathematics [29]. 

Are there "numbers" beyond the quaternions? (What is a number, anyway?) 
Cayley's and, independently, Graves' octonions (8-tuples of reals) gave an affirmative 
answer, and raised the obvious question whether there are numbers beyond the 
octonions. This time the answer was negative; it was given by Frobenius and C. S. 
Peirce, again independently [13]. Implicit in these ideas are the notions of division 
ring and algebra. 

Payoffs: 

(a) Ideas on quaternions can be used to prove Lagrange's four-squares theorem: 
Every positive integer is a sum of four squares [9], [10]. 

(b) Are complex numbers unavoidable in the solution of the so-called irreducible 
cubic? Yes. There is a proof using the considerable power of Galois theory [3], 
but the result can also be established by means of elementaiy field-extension 
theory [26]. 

General remarks on the course 

(a) The first and last problems, and probably also the second, are atypical in an 
abstract algebra course, but I have found them to be pedagogically enlightening 
and rich in algebraic ideas. Historically, they signalled the transition from 
classical to modern (abstract) algebra. 

(b) The first problem begins with a "simple" numerical question. The idea is to 
ease students gently into the abstractions. 

(c) While the sequence of topics in algebra books, and therefore in algebra courses, 
is usually: groups, rings, and fields, our problems introduce students first to 
rings, theen fields, and finally groups. I have found this order to be mnore 
effective. It leaves to the end the conceptually most difficult notion, that of a 
group, which is "unnatural" to students. 

(d) I have listed only five problems. It miglht be argued that this does not appear to 
be sufficient for an entire course. However, the problems are wvide-ranging and 
rich in ideas, and are extendible in various directions, some of which are 
indicated in the various "payoff' sections. 

(e) No textbook is used in the course. However, many references are given, both 
technical and historical, and students are expected to read some of them! 

(f) The historical material used in the course comes mainly from secondaiy sources. 
Asking students (and instructors!) to read and assimilate primaly sources would 
make the course unreasonably difficult. The course is quite challenging as it is. 
And its objectives can be met using secondaiy sources. 

(g) The course tries to deal withl wider mathematical ideas in addition to the 
standard algebraic fare: the "why" and "what for" in addition to the "how." 
This is reflected in the assignments. Tlhus, aside from being asked to do the 
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usual types of problems, for example, to show that the additive inverse in a ring 
is unique, students are expected to write "mini-essays" involving both historical 
and technical matters, for example, to discuss De Morgan's contribution to 
algebra and hoow it advanced abstract algebraic thinking. 

To read independently in the mathematical literature, and to write about 
what they have read, are tasks which mathematics students are not-but should 
become-accustomed to. 
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1. Introduction 

In the last thirty years scientists have found that unusual and unexpected evolution 
patterns arise frequently in important deterministic processes of interest to many 
different fields, including Chemistry, Physics, Biology, Medicine, Engineering, and 
Economics. Examples of such processes include chemical reactions, pulsation in gas 
lasers, atmospheric changes, blood cell oscillations, and neural networks. The most 
peculiar aspect of these patterns is their random-like behavior. The systems are 
deterministic. Consequently they are, at least in theory, perfectly predictable. Hence, 
it may seem contradictoiy to talk about random-like behavior. However, more often 
than not their evolution appears as a random sequence of events, at least to superficial 
analysis. 

The name "chaotic systems" has been proposed to collect them loosely under a 
common roof. Biologists, chemists, mathematicians, philosophers, physicists, and 
others have tried to capture in a formal definition the distinctive and essential features 
characterizing these systems among all dynamical processes. The success has been 
limited. On the one hand, eveiyone recognizes that certain systems cannot be 
considered chaotic; on the other hand we could say, with a bit of exaggeration, that 
there are as many definitions of chaos as experts in this new area of knowledge (see, 
for example [5], [3], [8], [4], [7]). Moreover, and this is certainly not a desirable 
situation, the various definitions are not equivalent to each other. 

Many reasons can be given for this state of affairs, and the fact that chaotic behavior 
is of great interest to many disciplines is certainly one of them. It is difficult to find a 
common ground that meets the needs and the standards of different fields. For 
example, an experimental scientist is inclined to adopt a definition that can be tested 
in a laboratoiy setting and is less concerned with exceptions. A theoretician, however, 
is interested in characterizing chaotic behavior uniquely, and does not feel the 
urgency to provide a definition wvhich can be easily verified by means of numerical or 
experimental techniques. 

The main puipose of this paper is to bring a contribution to the efforts aimed at 
capturing the distinctive features of chaotic systems in a way that is easily accessible to 
undergraduates. This purpose is achieved in two ways. The first is by introducing the 
reader to those definitions of chaotic systems that are more frequently encountered in 
the literature and do not use advanced mathematical concepts and tools. We illustrate 
the key components of each definition. We also include a comparison table (Table 3.1) 
to provide the reader with an "at a glance" overview of the common traits and 
differences among the various definitions. The second is by analyzing in more detail 
two simple definitions proposed in recent years, one by S. Wiggins [8] and the other 
by M. Martelli [6]. Although formulated in different manner, the two definitions are 
practically equivalent. Moreover, they seem to embody the essential features which all 
other definitions are trying to capture. Finally, the characterizing traits of these two 
definitions are suitable for easy and reliable numerical verification. Therefore, they 
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appear to represent the most effective way to introduce chaotic behavior at an 
undergraduate level. 

The paper is organized as follows. In section 2 we introduce terminology and 
notation frequently used throughout. In section 3 we present some of the most 
common definitions of chaos; and we analyze briefly their key components. In section 
4 we establish the basic equivalence of the definitions of Wiggins and Martelli. We 
conclude the paper (section 5) wvith an analysis of the baker's transformation and with 
short remarks on numerical tests of chaotic behavior. 

Before embarking on the plan we have outlined, we illustrate a simple clynamical 
system, which is chaotic according to all definitions presented later. The purpose of 
this discussion, conducted mainly by means of graphs, is to make the reader familiar 
with the characteristic features that each definition of chaos tries to capture. 

Example 1.1. Let f(x) = 4x(1 - x). Notice that f maps the interval [0, 1] onto 
itself. Consider the dynamical system x,1+1 =fx ,,) governed by the function f in 
[0, 1]. Select the point xo = 0.3 and study the sequence of iterates of f: xl =f(0.3), 
Xv2 =f(=f(x,), . To see how this sequence behaves, plot the points 
(x,,) Xn+1) for n = 500,501,... 1000 and for n = 1500,1501,...,2000 in two 
side-by-side plots. (See FIGURE 1.1.) The points belong to the graph G(f) of f since 
x1+1 =1 x ,). It appears that they fill up G(f) entirely in both cases. This graphical 
evidence suggests that no matter how small an interval [a, b] is selected in [0, 1], the 
sequence x1 =f(0.3), x, =f(xj1),. xA,1 +, =f(x,),... visits [a, b] infinitely often. 
This is one feature of chaotic systems which all definitions tiy to capture: the presence 
of a sequence of iterates (orbit) that passes "as close as we like to any possible state of 
the system." We shall make this idea more precise in section 2 with the definition of 
topological transitivity. 

0.8 0.8 / 

0.6 0.6 // 
0.4 0.4 

0.202 

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 
FIGURE 1.1 

On the left graph we have plotted (x, x,+1) for ii = 500,...,1000 and on the right for 
n 1500,.. .,2000 from the same sequence of iterates of f starting at x0 = 0.3. It appears that 
in botlh cases the sequence is "reconstructing" the entire graph of f. 

To illustrate another important property of the system x,,+1 =f(x,,), consider two 
sequences of iterates, one starting (as before) at x0 = 0.3 and the other starting 
at a point very close to 0.3. Choose, for example, yo = 0.300001. Plot the points 
(n, j x, - jti), i.e., the iteration number on the horizontal axis and the distance 
between corresponding iterates of f on the vertical axis. At the beginning (for small 
values of n) the two sequences are close to each other. Later, they become separated, 
and the distance I x, - yi, I oscillates between 0 and 1 in an unpredictable fashion. (See 
FIGURE 1.2.) 
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FIGURE 1.2 

The distance I X, - y,I is plotted versus the iteration number n. Notice that the two sequences 
of iterates are very close for n = 0, 1,. 15. After that, separation takes over. Sometimes the 
two sequences are vely close (around n = 45 and n = 60), and sometimes they are as far as they 
can be. 

The graphical evidence suggests that the evolution of the system is very sensitive to 
smalall changes. Thus, if this system were a model of a real process, we would be 
tempted to conclude that its evolution, although governed by a known function, is 
nevertheless "unpredictable," since it is practically impossible to know the initial state 
exactly. This is a second feature of chaotic systems which every definition tries to 
capture, namely the sensitivity to small changes, and the unpredictability that comes 
with it. We shall make this idea more precise with the definition of unstable orbits and 
of sensitive dependence on initial conditions. 

II. Notations and definitions 

Let F: Dom F c R q f Rq. A set X c Dom F is said to be invariant under the action 
of F if F( X) C X. In the case when F( X) is bounded and F is continuous we can 
assume that the closure of X is contained in the domain of F. Then the invariance of 
X implies the invariance of its closure. In this paper we shall always assume, unless 
otherwise stated, that F is continuous and its invariant sets are closed and bounded. 

Let X c Dom F c R q and assume that X is invariant. The discrete dynamical 
system defined by F in X takes the form 

X11 +1 =F( x,.) (2.1) 

Equation (2.1) provides the state x,, + of the system at time n + 1 once its state x,, at 
time n is known. Given an initial state xo C Rq, the sequence of iterates of F: 

) X1 =F(xo), x` = F(xl) = F(F(x0)) = F2(xo) ... , =F(x) .( . . (2.2) 

is the orbit of xo, denoted by O(xo, F) or simply O(xo) when the function F is 
clearly specified. An orbit O(xO) is periodic if for some p ? 1 

x1) =X0. (2.3) 

The smallest integer p for which (2.3) holds is called the period of the orbit. When 
p = 1 the orbit O(xo) is stationary, and the point x0, now denoted by xS, is an 
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equilibritum point of the system. An orbit 0( y) is asymeptotically periodic if there is 
a periodic orbit O(x0) such that 

linm | x,- = 0. (2.4) 
U -) cc 

If, in addition, Yk = Xl; for some k > 1, then 0( y,) is eventually periodic. 
A point y is a linit point of O(xo) if a subsequence of 0(x0) converges to y. The 

set of limit points of 0(X0) is denoted by L(xo). Under our standard assumptions on 
X and F we have that L(xo) is closed and bounded and it satisfies the important 
equality 

F(L( x0)) = L( x0). (2.5) 

The set L(xo) is finite if and only if O(xo) is asymptotically periodic. When L(xO) is 
infinite we say that O(xo) is aperiodic. 

O(xo) is said to be tunstable if there exists r(xo)> 0 such that for every d > 0 we 
can find yo 0 Dom F and n ? 1 satisfying the two inequalities II y- x0I < d and 
ll YlH - xJ1 > r(xo). An orbit which is not unstable is said to be stable. When O(xo) is 
contained in an invariant set X c Dom F, we say that 0(x0) is unstable with respect 
to X if yo C X. Notice that, in this case, the set X has to be infinite. 

Let X c Dom F c R q. F has in X sen.sitive dependenice on initial conditions if there 
exists -0 > 0 such that for eveiy x0 c X and d > 0 we can find yo c Dom F and n ? 1 
with the property that Ixo - yoII < d and IHx, - yH,I > ro. Therefore, evely orbit O(x) 
with x c X is unstable with the same constant rO. Consequently, sensitive depen- 
dence on initial conditions is stronger than instability. When X c Dom F is an 
invariant set and we require that Yo c X, we say that F has in X sensitive depen- 
dence on initial conditions vith respect to X. In this case no point of X is isolated, 
i.e., for eveiy x E X and eveiy c > O we can find y E X, y 7 x, such that HIx - y?I < c. 

A set U cX c EAq is said to be open. in X if U = X n 0 where 0 is an open subset 
of Rq. The function F is topologically transitive on an invariant set X if for eveiy pair 
of sets U, V c X which are open in X, there exists an integer k ? 1 such that 
Fk(U) n V 0 0. This property, as we shall see in section 4, guarantees the presence 
of an orbit "that passes as close as we like to any state of the system." 

Ill. Some common definitions of chaos 

In this section we present some definitions of chaos that can be found in the current 
literature and are accessible to undergraduates. 

1. Li-Yorke chaos Let I be an interval and f:I -> I be a continuous function. 
Assume that f has a periodic orbit of period 3. In a well-known paper Li and Yorke 
[5] proved that 

(i) f has periodic orbits of evely period; 
(ii) there is an uncountable set S c I such that O(x) is aperiodic and unstable 

for every x c S. 
Maps of this type have been called chaotic in. the Li-Yorke sense, without specifying if 
the chaotic behavior should be considered in the entire interval I or simply in the 
closure of S. 

One of the clear advantages of this definition is that it can be easily verified, by 
means of graphical techniques, whether a continuous map has a periodic orbit of 
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period 3. Moreover, property (ii) addresses, at least in part, the question of unpre- 
dictability of the system, since the orbits starting at points of S are unstable. The 
following simple example shows that the assumption of continuity is critical in the 
Li-Yorke approach. 

Examnple 3.1. Let f: [0, 1] -> [0, 1] be defined by 

x x + .5 0 <x < .5 
) .5.<x<1. 

Notice that f is discontinuous at x = 0.5. Eveiy orbit of f in [0, 1] is eventually 
periodic of period 3. For example, for xo = 0.2 we have xl =0.7, X2 = 0, x3 = 05, 
4 = 1, 5 = 0,.... 
WVe can also find examples of maps for which the set S is negligible, in the sense 

that for eveiy r > 0, S can be covered with a countable family of intervals of total 
length not exceeding r. Consequently, the probability that an orbit 0(x0) is not 
asymptotically periodic is zero, and the chaotic behavior is not experimentally observ- 
able. The following example illustrates the situation. 

Example 3.2. Let 
O O<x0x< .25 

4x - 1 .25 <x < .5 
- l-4x+3 .5<x<.75 

0 O .75 <x < 1. 
It can be easily verified that 0(23/65) is a periodic orbit of period 3 and f2(x) - 0 
wlhenever x < 1/3 or x > 2/3. Moreover, f2(X) = 0 if x c I = [5/12, 7/12], whose 
length is 1/6. The inverse image of this interval is made of those points x such that 
f3(x) = 0 and is the union of the two intervals I12 = [17/48,19/48] and 12 = 
[29/48,31/48]. The total length of the two intervals is 1/12. The inverse image of 
121 u 122 is the union of four intervals 13, = [65/192,67/192], 132 = [77/192, 79/192], 
133 = [113/192,115/192], 134 = [125/192,127/192]. Their total length is 1/24. Ev- 
eiy point x of these four intervals has the property f4(X) = 0. Proceeding in this way 
we find a family of disjoint intervals contained in the interval [1/3,2/3] and whose 
total length is 1/6 + 1/12 + 1/24 + = 1/6(1 + 1/2 + 1/4 + 1/8 + ) = 1/3. 
Eveiy point x that belongs to one of these intervals satisfies f"(x) = 0 for some 
n ? 1. Hence the set of points SO whose orbit does not go to zero is negligible. Since 
S c SO we see that the orbit of a point x selected at random in [0, 1] converges to 0. 
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FIGURE 3.1 

Shown are the points x such that f"( x) = 0 for ni 1, 2. 
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The result of Li-Yorke does not hold in dimension higher than one. For example, a 
rotation in R2 of 120? around the origin has a periodic orbit of period three (all 
non-stationaiy orbits are periodic of period 3), but fails to satisfy both (i) and (ii). The 
orbits of such a system have neither of the two properties we indicated (see Example 
1.1) as relevant to chaotic behavior. Table 3.1 compares the definition of chaos 
according to Li-Yorke to the other definitions listed below. 

TA B L E 3.1 Compalison among different definitions of chaos 

Definition map domain requirements advantages weak points 

Li-Yorke continuous bounded periodic orbit easy to check can be used 
intelval of period 3 only in R 

Expeiimentalists' continuous X c R' sensitivity easy to check defines as 
bounded, on initial chaotic systems 
closed, conditions which are not 
invariant 

Devaney continuous X c Rq sensitivity, goes to the redundancy 
bounded, transitivity, roots of chaotic 
closed, dense behavior 
invariant periodic orbits 

Wiggins continuous X c Rq sensitivity, goes to the admits 
bounded, transitivity roots of chaotic degenerate 
closed, behavior chaos 
invariant 

Martelli continuous X c Rq dense orbit "equivalence" none of 
bounded, in X Nwhich with Wiggins, the above 
closed, is unstable easy to check 
invariant numerically 

2. Experimentalists' definition of chaos (sensitive dependence on initial condi- 
tions) According to many non-mathematicians, particularly physical scientists, a 
dynamical system x,+ = F(x,,) is chaotic in an invariant set X if F has in X 
sensitive dependence on initial conditions. Therefore, we may obtain very different 
orbits from two almost identical starting points (see Example 1.1). It follows that the 
evolution of the system is unpredictable, since it is practically impossible to know the 
initial conditions exactly (mainly due to unavoidable measurement errors). This is 
obviously an important feature of the experimentalists' definition of chaos. An 
additional merit is that sensitive dependence on initial conditions can be checked 
numerically. However, despite the advantages, this definition of chaos is not satisfac- 
tory. The following example illustrates some of the problems wlhich may arise. 

Examiple 3.3. Let D = {-x E x: IxII < 2). Using polar coordinates define F: 
D -> D by 

F(x) =F( p,) =( p, 0+p). (3.1) 
Notice that for every p E (0, 2] the set C, = {x E 1R2: I x I = p} is invariant and the 
dynamical system defined by F is a rotation in CP. Consequently, it does not seem 
appropriate to label the system as chaotic in the invariant set CP. However, the system 
has in C sensitive dependence on initial conditions with ro = p. In fact, let x = 

(po, 00) and d > 0. Choose n so large that ,, <d and po - > 0. Let yo = 
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FIGURE 3.2 
Plot of (n, flx,, - y, ID), Nith x0 = (1, 0) and y0 = (1 - 0.01Tr, 0). We see that the distance can be 
as large as the diameter of the smaller circle. 

(p0 -, Oj). Then |x,-yO|H< d and 

X, ( po, O + npo), U11 Po -, 0 + npo - (3.2) 

Consequently -x,, -yI > ro and the system is chaotic in Cp for eveiy pE(O,2]. 
However, the system is non-chaotic in the disk D. We do not seem to have a 
satisfactoiy situation (see Table 3.1). 

3. Wiggins' definition of chaos According to Wiggins [8] a map F is chaotic in an 
invariant set X provided that 

(i) F is topologically transitive in X; 
(ii) F has in X sensitive dependence on initial conditions. 

We shall see in section 4 that topological transitivity implies the existence of an orbit 
"passing as close as we like to any state" of the system in X. Therefore the definition 
of Wiggins embodies both properties mentioned in Example 1.1 as fundamental to 
chaotic behavior. However, Wiggins' approach presents some problems. For example, 
the map F( p, 0) of Example 3.3 is chaotic in the sense of Wiggins in every circle Cp 
such that p7n is irrational. In fact, F has sensitive dependence on initial conditions 
in CP. Moreover, the orbit 0(x0), xo = ( p, 0) visits eveiy arc of Cp, no matter how 
small. Hence F is topologically transitive in CP. Notice that F is non-chaotic in any 
annulus R[ a, b] = {x E D: a < lIxiI < b, 0 < a < b < 2) since F fails to be topologically 
transitive. An additional problem with Wiggins' definition arises from the so-called 
"degenerate chaos" (see [1]), whlich is chaotic behavior in a finite set of points. In fact, 
according to Wiggins a dynamical system can be chaotic in a singleton X = { xo}. For 
example the system governed by the function 

f(x) = -21x1 + 1 (3.3) 

is chaotic in the set X = {1/3}. FIGURE 3.3 illustrates that orbits starting close to 1/3 
move away from the equilibrium point (see Table 3.1 for a summary). 

4. Martelli's definition of chaos According to Martelli [6], F is chaotic in an 
invariant set X provided that there exists x0 E X such that 

(i) L(xo) =X; 
(ii) O(xo) is unstable with respect to X. 

Since F(L(xo)) = L(xo) (see Equation 2.5) we obtain that F(X) = X, i.e., F is onto. 
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FIGURE 3.3 
The orbits of points close to 1/3 more away from the equilibrium point. 

The map F( p, 0) of Example 3.3 is non-chaotic in the sense of Martelli in any 
circle Cp or in any annulus R[ a, b]. In a circle Cp the map fails to satisfy (ii), and in an 
annulus R[a, b] fails to satisfy (i). Moreover, according to Martelli, no map can be 
chaotic on a finite set, since instability of O(x0) with respect to X implies that X is 
infinite. 

5. Devaney's definition of chaos A map F is chaotic in the sense of Devaney [3] 
in an invariant set X if 

(i) F is topologically transitive in X; 
(ii) F has in X sensitive dependence on initial conditions; 
(iii) the set P of periodic orbits of F is dense in X. 

Devaney adds the density of P in X to the two conditions required by Wiggins, thus 
bringing back, at least to some extent, a feature of Li-Yorke chaos. Moreover, as 
Crannell [2] points out, the "requirement that periodic orbits be dense appeals to 
those who look for patterns within a seemingly random system." 

It has been shown [1] that conditions (i) and (iii) imply (ii). In this sense, Devaney's 
definition of chaos is redundant. Moreover, as the following example shows, there are 
systems that seem to deserve the label "chaotic" and do not satisfy the third 
requirement of Devaney's definition (see Table 3.1 for a summary). 

Exanple 3.4. Let F be given in polar coordinates by F( p, 0) = (4p(1 - p), 0 + 1) 
and let D(O, 1) be the invariant disk centered at the origin, with radius 1. The origin is 
the only fixed point for F, and F does not have any periodic orbit of period p > 1. In 
fact, F stretches or shrinks the distance of eveiy point of D(O, 1) from the origin, 
while rotating the point by an angle of 1 radian. Since 1/7 is irrational, no point 
x&i E O(x0,) can come back to the same ray which contains x0. At the end of this paper 
we will show that the dynamical system governed by F in D(O, 1) is "unpredictable" 
and has orbits that pass as close as we like to every point of D(O, 1). Thus this 
system has exactly the two fundamental properties of chaotic behavior mentioned in 
Example 1.1. 

IV. Defining Chaos 

Recall that, according to Wiggins [8], F is chaotic in an invariant set X if 
(i) F is topologically transitive in X; 
(ii) F has in X sensitive dependence on initial conditions. 
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According to Martelli [6], F is chaotic in X provided that there exists xo E X such that 
(i) L(xo)=X; 
(ii) O(xo) is unstable with respect to X. 

These two definitions can be considered equivalent. In fact, (see Theorem 4.1) F is 
topologically transitive in X if and only if there exists xo E X such that L( x0) = X. In 
addition, F has in X sensitive dependence on initial conditions with respect to X if 
and only if O(xo) is unstable wit/ respect to X (see Theorem 4.2). 

There remains an important difference between the two approaches. Wiggins does 
not require sensitivity with respect to X, while Martelli requires instability tvith 
respect to X. Theorems 4.1 and 4.2 contain the theoretical results that establish the 
practical equivalence between these two definitions of chaos. For both theorems we 
provide a brief sketch of the proof, leaving details to the reader. 

THEOREM 4.1. Let X c 0Rq be closed and bounded and F: X -> X be continuotts. 
Thetn F is topologically transitive in X if and only if there exists xo E X sc/ch that 
L(xo) = X. 

Proof The "if" part is easy. The presence of an orbit 0(x0) such that L( xo) = X 
clearly implies topological transitivity. 

The "only if" part is a bit more difficult. The basic idea is that given any positive 
integer m7 we can cover X with finitely many balls of radius 1/rn and find a point x... 
whose orbit visits each ball of the covering. Moreover, the choice of x,1 can be made 
so that the sequence {x ,,, mn = 1, 2, ... I converges. Let x0 be its limit. It is easy to 
verify that L(xo) =X. 

THEOREM 4.2. Let xo E X be sUch that L(xo) = X. Then F has in. X -sensitive 
dependence on initial conditions with respect to X if and only if O(xo) is unstable with 
respect to X. 

Proof: This time the "only if" part is immediate. In fact, sensitivity to initial 
conditions with respect to X clearly implies that O(xo) is unstable with respect to X. 

The "if" part is a bit longer. Given yo E X and d > 0, determine an iterate x*1 of 
xo such that -x, -yo <? d/2. This can be done since L(xo) = X. Next, one shows 
that for eveiy n > 1 the orbit O(x,,) has the same instability constant of O(xo), i.e., 
,r-(X,) = r(xO). It follows that either some iterate yp of y0 is at least as far as r(xo)/3 
from x*1 +, or this separation happens for some iterate Z1,p of a point z0 which is 
closer than d to both yo and x* In either case, we obtain that r(yo) ? r(xo/3). 

A second look at Example 3.4. With Theorem 4.1 and 4.2 we can establish that the 
dynamical system of Example 3.4 is chaotic in D(O, 1) according to Wiggins 
and Martelli. We use the fact, well-established in the literature, that the map f(x) = 
4x(1 - x) of Example 1.1 not only is topologically transitive in [0, 1] but has the 
additional property that given any interval [a, b] c [0, 1], a < b, there is an integer p 
such that f P[a, b] = [0, 1]. Consequently, after finitely many iterations, the F-image of 
a small open disk in D(O, 1) will contain an open set U c D(O, 1) Aith a full radius. 
The rotation of 1 radian spreads U entirely over D(O, 1) in finitely many additional 
iterations. Hence F is topologically transitive in D(O, 1). From Theorem 4.1 there is 
XO E D(O, 1) such that L(xO) = D(O, 1). Consequently, using once more the statement 
from Example 1.1, the orbit passes as close as we like to any point of D(O, 1). It is also 
well known that the map f has sensitive dependence on initial conditions in [0, 1]. 
Hence, O(xo) is unstable in D(O, 1) and F is chaotic in D(O, 1) according to Wiggins 
and Martelli. In FIGURE 4.1 we plot I -x, -y,I versus the iteration number n, with 
xo = (.3, 0) and yo = (.300001,0). (The reader should compare the graphl with Fig. 
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FIGURE 4.1 

Plot of (n., 11x,} - tj,, I). The behavior of the distances repeats tlhe situation of Example 1.1. 

1.2.) The map F is non-chaotic in D(O, 1) according to Devaney. This example seems 
to suggest that the density of periodic orbits may not be necessaiy in defining chaos. 

V. Conclusion 

The definitions of chaos of Wiggins and Martelli, together with the one of Devaney 
and with the experimentalists' definition, can be applied to a certain class of maps with 
"admissible" discontinuities. The class is denoted by QC, which stands for "quasi-con- 
tinuous." It can be shown (the result will appear in a forthcoming paper by A. 
Crannell and M. Martelli), that the definitions of Wiggins and Martelli remain 
equivalent in QC. In the following example we present the so-called baker's transfor- 
mation, which defines a well-known chaotic system in [0, 1], and which belongs to QC. 

Exanple 5.1. Let B(x) = 2x - [2.x], where [2x] denotes the greatest integer less 
than or equal to 2 x. Notice that B maps [0, 1] into itself and it is discontinuous at 
x = .5 and x = 1. The action of B and its iterates on the elements of [0, 1] is better 
understood if we write them with their binaiy expansion. Then, for x E [0, 0.5) we 
have x = 0.0 a9a:3.. ., while for x E [0.5, 1) we have x = O.1a2,a3 ... where ai, i = 
2,3,..., are either 0 or 1. In both cases we obtain B(x) = O.a2a3.... Now we can 
easily see that the orbit of x0 = 0. 0 1 00 01 10 11 000 001 010 100 ... has the 
property L(x0) = [0, 1]. Moreover, O(xo) is unstable, since B'(x) = 2 for x 0 0, 1. 

Hence B is chaotic in [0, 1] according to Martelli's definition (applied to QC). 
Under the action of B the length of every interval [a, b] C [0, 1], a < b is doubled 
until, after finitely many iterations, we have B k [ a, b ] = [0,1]. Thus B is topologically 
transitive in [0, 1]. Sensitivity is ensured by B'(.x) = 2 for x # 0.5, 1. Hence, B is 
chaotic in [0, 1] according to Wiggins and to the experimentalists' definition (applied 
to QC). It can be shown that the periodic orbits of B are dense in [0, 1]. Thus B is 
chaotic in [0, 1] according to the definition of Devaney (applied to QC). B has a 
periodic orbit of period 3 in [0, 1], but the Li-Yorke definition of chaos cannot be 
applied to B, since we have seen that continuity is critical in the Li-Yorke case. 

We close this survey with a remark regarding the possibility of numerically 
investigating the chaotic behavior of a map. We feel that Martelli's definition is 
possibly most suitable for this purpose. The property L(xo) = X can be tested by 
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covering the set X with small boxes (segments in DR, squares in 1R, cubes in R ... 
and by verifying that the orbit "visits" all of them. The instability of the orbit can be 
tested with the method we used in Example 1.2 and in our second look at Example 
3.4. As mentioned in the introduction, chaotic behavior is of great interest to many 
disciplines. Proving it theoretically, however, is never an easy task, if at all possible. 
Numerical tests are frequently the only ones available in practical applications and we 
feel that the simpler they are, the greater their reliability will be. 

Acknowledgment. We are much indebted to the referees for their useful comments and particularly for 
the suggestion to incorporate the comparison table. 
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A Lambda Slaughter 

Mary had a little lamb- 
Da curled and curved for show. 
And everywhere that lambda went, 
The math came out just so. 

It followed her to calculus 
With multiplier rules, 
Which show the way to meet constraints 
As in Lagrange's school. 

In matrix class it proved itself 
To be a trusty pal, whose 
Assistance could be counted on 
For writing eigenvalues. 

So keep an eye on Mary's friend- 
Its uses transcend measure. 
Beyond a doubt her lambda is 
A character to treasure. 

DAN KALMAN 

AMERICAN UNIV7ERSITY 

WASHINGTON, DC 20016 
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N OTE S 

Archimedes' Quadrature 
of the Parabola Revisited 

GORDON SWAIN 
THOMAS DENCE 

Ashland University 
Ashland, OH 44805 

Introduction In a letter (later titled Qutadratutre of the Parabola) to his friend 
Dositheus, Archimedes wrote, " . . it is shown here that eveiy segment bounded by a 
straight line and a section of a right-angled cone [a parabola] is four-thirds of the 
triangle with the same base and equal height with the segment .. ." [3, p. 233]. Thus 
the area of a segment of a parabola cut by a chord can be determined from the area of 
a certain inscribed triangle (FIGURE 1). In this note we will extend the result of 
Archimedes to a formula for the area of a parabolic segment from the area of any 
inscribed triangle having the chord as one side. We will also give an algebraic 
(coordinatized) proof of the result, which has the additional bonus of showing that the 
area of the segment can be expressed as a geometric series. Finally, we will address 
the question of whether geometric series appear in calculating the areas of segments 
of other curves. 

Archimedes' result In Qucadratttre of the Parabola, Archimedes presents two 
proofs of his result. In the first the segment is divided into wedges with a common 
vertex at one end of the chord, and the formula is found through center of mass 

FIGURE 1 
Tiiangle inscribed in parabolic segment. 

123 
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arguments and increasing the number of wedges (see [1, p. 336-342]1. The second, 
which is of interest here, is purely geometric (see [1, p. 243-245]2. The proof we 
present here, while using somewhat modern notation, gives the flavor of his original 
work. For example, AB refers both to the line segment and its length, and ALABC is 
both the triangle and its area. 

THEOREM 1. ( Archimeledes) The a-rea of a segmnent of a parabola is foutr-thirds the 
acrea of the triangle wthich hias the chord as one side aind as the opposite vertex the 
point on the parabola in the di.rection pairallel to the axis fromi the midpoint of the 
chord. 
In FIGURE 2, let Ml be the midpoint of the chord AB, and MC be parallel to the axis 
of the parabola. A property of parabolas in general is that, if DE is parallel to AM, 
then 

A 

C 

c 

FIGURE 2 
Segment formed by chord AB. 

AM 2 MC 
DE 2 EC 

Archimedes refers the reader to the classic works on conics by Euclid and Aristaeus 
for a derivation of this property [3, p. 235]. We note that AB and MC need not be 
perpendicular. 

Now, in FIGURE 2, suppose further that P is the midpoint of AMI, and PD is parallel 
to the axis of the parabola. 

MC _ AM2 (2.DE)' 
EC DE2 DE2 

so MC = 4 EC and ME = 3 EC. Thus MC =4 ME =4 PD. 

1The Arab mathematician Thabit ibn Qurra (836-901 AD, Harran and Baghldad, [2]) gave a proof wvlhiclh, 
wvhile similar to Archimedes', divided the segment into slices parallel to the clhord, giving a Riemann 
integral style derivation of the area (see [4]). 

Thabit's grandson lbrahim ibn Sinan (908-946 AD, Baghdad, [2]) provided a proof \vhiclh wvas also 
geometric in nature, but depended on the invariance of ratios of areas of plane figures uinder affine 
transformations (see [4]). 
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By similarity of triangles, MC = 2 - PW. Thus PW = 2 
* PD and PW = 2 W WD. Then 3 

AACP = 2 A ADC, AACM = 4 AADC, and AACB = 8 A ADC. The triangle simi- 
larly inscribed in the segment determined by the chord CB also has an eighth of the 
area AACB. In each of the four remaining parabolic segments we can inscribe a 
triangle that has again an eighth of the area of the larger triangle with which it shares 
a side. This process can be continued indefinitely, and in the limit fills the segment. 

At this point Archimedes applied an indirect limiting process to approximate the 
area of the original segment, showing that it can be neither greater than nor less than 
- ALACB. We arrive at the same conclusion by noting that the area of the segment is .3 
the sum of the infinite sequence of the areas of all the inscribed triangles. Namely, 

E2' "1 " - zACB= zxACB . Ey, = 4 * zxACB. 
)1=0 n1=0 

Exacmwple. To gain a little more insight into the process described in the proof 
above, consider the segment of the parabola y = X2 cut by the chord from ( - 3, 9) to 
(5, 25). We first inscribe a triangle such that the vertex opposite the chord lies at (1, 1), 
directly below the midpoint, (1, 17), of the chord (FIGURE 3). The area of this triangle 
will be l (5 - (- 3)) (17 - 1) = 64, thus, by Theorem 1, the area of the segment 
should be - 64 We could show this using a simple integration, but let us 
continue inscribing triangles instead. We next inscribe triangles in the two parabolic 
regions that remain, again with the opposite vertex below the midpoint of the chord 
which defines each segment. The area of each of these is 4 4 4 = 8. At the next 
stage, each of the four triangles will have area 1. We continue inscribing triangles 
(2'1-1 triangles at the nth stage) to fill the parabolic segment, yielding a total area of 

I i 2 i 

3__ 
256 64+2 8 + 4 1 + 8 @ 25 + =64 (1 + 4+ ( + ( 4 ) =) 41 

as we had expected. 

25t X 

20 // 

15, 1Ot 

0.- 

-4 -2 0 2 4 x 

FIGURE 3 

Sequeince of inscribed triaingles. 
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A generalization What happens if we take the parabolic segment in the example 
above, but inscribe a triangle which has the opposite vertex at a different point on the 
parabola? Archimedes' formula does not apply but perhaps something similar occurs. 

Examiiple. Let us start with a triangle where the vertex is at (- 1, 1), directly below 
the point (- 1, 13) on the chord (FIGURE 4). We note that the point (- 1, 13) divides 
the chord into two parts according to the proportion l: . The area of this triangle will 
be l (5 - (- 3)) (13 - 1) = 48. We inscribe triangles in the remaining two segmen-ts, 
again choosing the vertex to lie below the point on the corresponding chord that 
divides it in the same proportions as before. Thus the new vertices are (- 2.5,6.25) 
and (.5,.25) respectively. The areas of these triangles will be A and - respectively. 
The areas of the four triangles at the next stage are 256 8516, 851, and 2187 respectively, 
left to right. Continuing to inscribe triangles, the area of the original segment will be 

13 81\ 13 81 81 2187 
Area =48+ I-+- I+ I+ + A4 4 J 256 + 256 + 256 + 256, + 

=48 + 21 + 176 + 48(1 + 16 + 16) + 

2.5 

20 -. 

10,- 

-4 -2 0 2 4 
x 

FIGURE 4 
Using proportion I :3 

If we assume the series is geometric, then the sum is 

1 16 256 
48 =48 = 

as before. We will see later that this is indeed a geometric series. The above example 
motivates a generalization of Theorem 1. 

THEOREM 2. If in a parabolic segmiient a triangle is inscribed twhich has the chorcd as 
one side and the opposite vertex belowv the point on the chord wvhich divides it 
according to the proportion r:1 - r, then the area of the parabolic segment is 1 

3rie- 3oe2 
times the area of the inscribed triangle. 
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A\\, 

>2B 

C 

FIGURE 5 
General case. 

In FIGURE 5, let V be the point which divides the chord AB according to the 
proportion r:1 - r, and Q the point on the parabola directly below. We assume 
< 1; the proof is similar for r > + while Theorem 1 is when r = 1. Let M be the 

midpoint of AB, MC parallel to VQ and the axis of the parabola, and QD parallel to 
AB. Then, by the property of parabolas, MC/DC =AM 2IQD2 = AM 2/1M2 or 
DC/MC = VM2/AM 2 By assumption, r = AV/AB = AV/2 AM. So 2r = AV/AM 
and 1 - 2r - VM/AM. Thus DC/MC = (1 - 2r)2 and MD/IC = 1- (1 -2r)2 = 

4r-4'r2. Now 

AAQB _ VQ MD 2. - = = ~= 4r- 4~ 
AACB MC MC 

Using Theorem 1, the area of the segment is 

4- AAGB=- 4 <I.AAQB= 9.IAAQB. 3 3 4r-4 r 2 3r- 3r 2 

Theorem 2 gives us a formula for the area of the segment in terms of the area of 
any inscribed triangle which has the chord as a side. 

An algebraic proof The following is a coordinatized version of Theorem 2. Though 
the mathematics is not as clean as in Theorems 1 and 2, we have the surprise of seeing 
the appearance of geometric series descriptions for the area of the parabolic segment. 
By the tvidlth of a segment we mean the difference between the x-coordinates of the 
endpoints of the chord which determines the segment. 

THEOREM 3. Let f(x) = AX 2 + Bx + C be any qttadratic fjtnction, tw > 0 and 
0 < r < 1 any real nttnbers. Then the area of a parabolic segntle'lt off tvith twiclth tw is 
A1(1 + R + R2 + R3 + ) where A1 = 1A1 r(l - r)O3 and R = 3r2 - 3r + 1. 

Let a < b be any real numbers and let c = a + r(b - a) be the number between 
them determined by the proportion r:1 - r. We calculate the area of the triangle T 
(see FIGURE 6) using the difference of the areas of the trapezoids below the sides of the 
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I 

aI c b 

FIGURE 6 
Triangle and trapezoids. 

triangle: 

T f(a) +f(b) (b -a) f(a) +f(c) (c -a) f(c) +f(b) (b) 

-f(a) +f(b) (b -a) f(a) +f(c) j(b - a) - f(c) +f(b) (I - r)(b -a) 

1 
= (b - a) [(1 - r)f(a) + if(b) -f(c)] 

Substituting for f and simplifying, 

A JAI 
T=2 r(l-r)(b-a)' = 2r(1- r)(b-a)3. (1) 

In the two remaining segments we inscribe triangles with total area, using equation 
(1), 

T = 2 r(l-r)(c-ca)3 + J2A r(l-r^)(b-c)3 

= 2 r( - r) [(b - a)]3 + J2A r( - r) [(1 - r)(b -c)]3 

= 2 r(l - r)(b -a )3(3r2- 33r + 1). 

If we define R = 3r2 - 3r + 1, then T' = T R. Writing A1 = +AIr(1 - r)w3 for the 
area of the first triangle inscribed in the original parabolic segment of width w and A, 
for the total area of the triangles added at the n stage, then clearly A, ,? = A, R. 
Adding up the areas of all the triangles gives us the area of the parabolic segment as 
the geometric series 

Area =A1+A2 +A3 +A4 + = A1(1+R + R2 + + 

as stated in the theorem. 
We name the formula R = 3r2 - 3r + 1 the Cummins fitnction in honor of 

Professor Emeritus Kenneth Cummins of Kent State University, whose presentation 
of the first example above at an Ohio Section MAA meeting inspired the authors' 
further interest in this problem. 
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TABLE 1 Values of Ai+,/Ai forf(x)=x 3 

, 1- = .1 .25 .5 .6 

1 .7955 .5130 .25 .2475 
2 .7840 .4847 .25 .2596 
3 .7752 .4687 .25 .2678 
5 .7627 .4524 .25 .2760 

10 .7462 .4403 .25 .2798 
15 .7387 .4381 .25 .2800 

R = .7300 .4375 .25 .2800 

COROLLARY 1. Th-e area of any parabolic segment is 1 TR 

Since any value of r in (0, 1) lill yield a value of R in [.25, 1), the geometric series in 
Theorem 3 will converge to the value given. With R = 3r2 - 3r + 1, this is the same 
result as Theorem 2. 

In the proof of Theorem 3, equation (1) does not depend on the intersection points 
of the chord with the parabola, but only on the width of the segment. This observation 
leads to the following property: 

COROLLARY 2. For a given parabola, any ttwo segmnents of the sane twidlth twill have 
the samne area. 

We note that Archimedes was aware of this property, though in stating it, he 
characterized the segments by their height at the midpoint of the chord [1, p. 79]. 

Other curves The curious reader might wonder if the methods used in this note 
apply to finding areas of segments of other plane curves. The area of any convex 
segment could be estimated by inscribing many triangles, but this would be practical 
only if we encountered series whose sums we knew (ideally, geometric series). Sadly, 
this method does not yield geometric series in general. It seems that this phenomenon 
is unique to quadratic functions. For the segment of the cubic f( x) = x over the 
interval [1,4], Table 1 gives values of the ratio Ai+1/Ai (using notation from the 
proof of Theorem 3) for various values of r, along with the values of the Cummins 
function. The exact values when r = .5 is an exceptional case, though it does occur for 
any cubic over any interval (the proof is similar to that of Theorem 3). It appears that 
for other values of r the ratios converge to the value of the Cummins function as i 
increases. Data for higher degree polynomials also appear to exhibit this trend. 

We sketch an argument for why this convergence occurs. Consider a convex 
segment of the graph of a polynomial f(x) of degree n. Suppose we are at the i stage 
of inscribing triangles into the segment, and focus on one of the triangles, say one that 
falls over the interval [a, b]. Expanding f as a Taylor series about a, and using the 
notation of Section 4, the area of this triangle is 

1 )3f"( a) 1 
___f_k__a)k T= r(1-r)(b--a) + 2b-a (r-r')(b-a) 2 ~~~k=3 k 

The area of the two triangles that are inscribed adjacent to it at the i + 1 stage is 

T'= Ir( - r)(3r2 - 3r + 1)(b - a)3f2a) 

+2I(b-a4 
f (k)a) ( - k-3 

k = 3 
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where gk(r) are polynomial functions of r only. The ratio of these areas is 

T' f"(a)'r(l-'r)(3r2-3r + 1) + (b-a)M 
T f"(a)r(1-r) + (b-a)N 

where M and N are bounded terms (involving derivatives of f, polynomials in r, and 
powers of (b - a)). As long as f" is not zero anywhere on the segment, we can see 
that the ratio converges to R = 3r2 - 3'r + 1 as b - a goes to zero. As we go from 
stage to stage, the width of the triangles does go to zero at least as fast as a geometric 
series with ratio max {(r, 1 - r}. The same will be true when we look at the ratio 
An+ I /A,, of the total areas at each stage. The curious reader may want to show that 
convergence will also occur in classes of functions other than polynomials. 

Acknowledgment. The authors \vould like to thank Glen Van Brumiimelen for the idea of using Taylor 
series that made the convergence argument possible, and for many other helpful comments on this paper. 
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Proof Without Words: Adding Like Sines 

R1 VA= A+ B2+ 2 ABcos t 0 B sin 4 
Asin x + B sin(x+ ) =R. sin(x + 0) 

T= =/2 tan 0=A 

Asin x + B cos x = VA2+ B2 sin(x + 0) 

Bsin4 

/ /B > g B sill(x +4) 

//A I ABSillCos 

1// '~~~~~~[ A ~~~~~~Asin x 

-RICK MABRY 

PAUL DEIERMANN 

LOUISIANA STATE UNIVERSITY 

SHREVEPORT, LA 71115 
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Perfectly Odd Cubes 

STEVEN KAHAN 
Queens College 

Flushing, NY 11367-1597 

A perfect number is one that is equal to the sum of its proper divisors, with 6 and 28 
being the two smallest examples. More than two thousand years ago, Euclid stated 
and proved, as Proposition 36 of Book IX of the Elemnents: 

If ml) = 21'-I is prime, then E. = 21'-1 (2 P - 1) is perfect. 

Primes of the form Ml are known as Mersenne primes, to honor the French priest 
who conjectured their primality in 1644. Mersenne primes occur only when p itself is 
prime, although not every prime p leads to a Mersenne prime. At present, there are 
36 known Mersenne primes; the largest, discovered in August 1997, has 895,932 
digits. 

In the eighteenth century, the prolific Swiss mathematician Leonhard Euler proved 
that every even perfect number inist be generated by a Mersenne prime, as 
described in Euclid's Proposition 36. The following result describes a somewhat 
surprising characteristic of all even perfect numbers greater than 6: 

THEOREM. Let p be an odd primne that generates the even perfect number E= 
2 1)-(21 - 1). Then E is expressible as the sumn of the cubes of the first n consectutive 
odd integers, where 'n = 2(1- 1)/2. 

For example, if p = 7, then E7 = 8128, and we can write 8128 = 13 + 33 + 53 + 
73 + 93 + 113 + 133 + 153. More remarkable is the fact that the largest perfect 
number now known, which has 1,791,864 digits, is the sum of the cubes of the first 
21488110 consecutive odd integers. (Skeptical readers are invited to verify this auda- 
cious claim.) 

Proof: Standard summation formulas verify that 

E(2i- 1)3= n2(2n' -1). 
1 

With n = 2( p - 1) /2 the right-hand side of this equation becomes 

(2(P-1)/2)2 (2(2(0'1)/2)2 1) = 2P' (2(2P'1) 1) = 2 P(2P - 1) 

or EP,, as claimed. 

The Square Root of Two is Irrational: Proof by Poem 

Double a square is never a square, and here is the reason why: 
If rn-squared were equal to two n-squared, then to their prime factors we'd fly. 
But the decomposition that lies on the left has all of its exponents even, 
But the power of two on the right must be odd: so one of the twos is "bereaven." 

-MAURICE MACHOVER 

ST. JOHN'S UNIVERSITY 

JAMAICA, NY 11439 
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Small Denominators: No Small Problem 

SCOTT J. BESLIN 
DOUGLAS J. BANEY 

VALERIO DE ANGELIS 
Nicholls State University 

Thibodaux, LA 70310 

I. Introduction This article is primarily concerned with the following problem. 

Let a and b be real numbers in the unit interval, with a < b. Define 

P) F(a, b) to be the reduced fraction with smallest denominator in the 
open interval (a, b). Find a formula or algorithm for computing 
F(a, b). 

It is always assumed that when either a or b is a fraction, it is in reduced form. The 
special case a= 9 and b = 7 appeared as a problem in [2]. As often happens in 
mathematics, the simplicity with which the problem is stated belies the complexity of 
solving it. 

We will observe interesting connections among the solution of (P), Farey se- 
quences, and continued fractions. Many of these connections lead to good classroom 
problems in elementary number theory and computer science. Diligent readers will 
uncover some unanswered problems of their own. 

Is F(a, b) a function? The existence of a minimal denominator is ensured by the 
Well-Ordering Property of the natural numbers. We establish uniqueness of F(a, b) 
in the following proposition. 

PROPOSITION 1. Suppose n is the minimnal denominator occurring in the interval 
(a, b), and suppose ' is in (a, b). Then ' is the only such fraction. 

Proof Suppose the conclusion fails. Then, without loss of generality, In + 1 is also in 
(a, b). Now (m + 1) <n so that -(mO + 1) > - n and hence -(in + 1) + (n + 1)n > 
-n + (n + 1)'n, or (in + 1)(n - 1) > nm. Thus > + . So + > > - 
and is in (a, b), which contradicts the minimality of n. D1 

(There is of course no fraction with maximmton denominator in (a, b).) 
We observe by inspection that 

F(0,1)=(2 (F 
) 

2 3 ,F(40,) =3 4 . 0, 1 n = 

These examples are special cases of the following more general result. The notation 
[ y denotes the greatest integer less than or equal to y. 

PROPOSITION 2. If 0 < b < 1, then 

F(O, b) rj1 
Ib +1I 
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For example, 

F(0,0.2191) = and F 0+ 

[0.2191]1 5 [J+ 
Proposition 2 can be proved directly. We will obtain it as a corollary to a more 

general theorem at the end of this article. 
One method of computing F(a, b) is through an exhaustive search, which "tries" 

1 1 2 12:3 
a ? 3,? 3, 4_ 4 4,?etc., until F(a, b) is found. Such an algorithm becomes computation- 
ally impractical as the denominator of F(a, b) gets larger. 

II. Farey sequences and continued fractions Many sources, including [1] and 
[3], treat Farey sequences and continued fractions. We summarize the main results 
below. 

Farey Seqttences. The Farey sequence of order ni, F, is the list of reduced fractions 
in the interval [0, 1], arranged in ascending order, whose denominators are less than or 
equal to n. For example, the Farey sequence of order 4 is 

0 1 1 1 2 :3 1 
4 14 4 3 2 :3 43 1 

Reduced fractions b and c in the unit interval, with <7c, are adjacent Farey b db d 
fractions if they occur in consecutive order in some Farey sequence. The interval 

, cl ]is then called a Farey interval. 
For example, + and 1 are adjacent Farey fractions in F3, and [1, 1] is a Farey 

interval-even though they are no longer adjacent in F5. 
It can be shown (usually by induction) that b and { are adjacent if and only if 

ad - bcl = 1; that is, if the matrix a c is a unimodular transformation on R'2 The 

mnediant of a Farey pair , < c2 is defined to be the fraction T'+ c We write (D c? bd (I+d b d 
-+ C to indicate Farey addition as opposed to ordinary real-number addition. The b + d 
following statements about the mediant of a Farey pair are true. Items (1), (2), (3) are 
routine exercises; item (4) requires some effort. 

(1) The mediant is in reduced form; 

(2) b < a+c < c b b +d d') 

(3)[ b + c] and[b + are Farey intervals; 
(4) Among all fractions I with b < I < c, the mediant is the unique one with y b y d' 

smallest denominator. 

These facts yield a recursive procedure for generating F,1 from F;,: insert the 
mediant into F, + 1 if its denominator is less than or equal to n + 1. For example, F5 is 
obtained from F4 as follows. 

(i) The first Farey pair in F4 is ?, 1. Farey add: D= 5. Because 5 has 
denominator < 5, 5 is in F5. 

(ii) The next Farey pair is 1, 3. Farey add: - 3= 9. Because 9 has denominator 
>5, 2 is not in F5. 

(iii) Repeat this procedure for each successive pair in F4 to obtain F5: 

0 1 1 1 2 1 3 2 3 4 1 
I5 1, 5 4 ) 3 ) 5 2 5') 3') 4') 5' ) 
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(In [5], the author discusses the sequences derived by including all mediants in the 
generating process, and obtains what he calls mnocldfifed Farey seqtences.) 

Statement (4) above is a partial answer to problem (P). For example, the fact that 

det [ =-1, implies that 5 and 3 are a Farey pair. Hence F( , 3) = 5 = _ 

Two questions remain: 

1. What if the endpoints of the interval are not a Farey pair? 
2. What if either endpoint is irrational? 

One computational solution to both questions is to use a "Farey process" to trap the 
given interval between two adjacent Farey fractions. The recursion resembles the 
bisection method; it proceeds as follows. Given 0 < a < b < 1: 

(i) Start with ? I 
(ii) Farey add to obtain the mediant. 
(iii) If the mediant is in the interval, then F(a, b) = mediant; otherwise, repeat (ii) 

and (iii) for a new Farey pair which includes the mediant. 

Exaisple. Find F(2 100 . The following sequence of Farey additions yields the 
result. 

0 1 1 - 1 1 2 < 
1 3 2< 2 2 1 3< 2 
2 1 3 71 2 3 5 71 
333 1 4 >100 3 4 7 100 

2 5 7 v' 7 5 12 v' 
3 7 10 < 2 10 37 17< 2 

12 5 =17 (V'9 71 ~ 9 71~ 17 Since 17 ED= 24 E 2 100)' we have F 2 =100 24- 

It is plausible, but not entirely obvious, that the process described above must 
terminate. See [4] for details. 

In Section III we will give a method for obtaining the last, "critical" Farey interval 
-( , 5) in the above example-without using the recursive Farey process. 

Contintted Fractions. (See [1], [3], and [4] for further details on continued frac- 
tions.) 

A simnple continued fraction [a0, a1, a2 ...] is an expression of the form 

ao 1 
al + 1 

2a + . 

where a0 is an integer and ai is a positive integer for i > 0. If the expression 
terminates, the continued fraction is said to be finite and represents a rational 
number. Otherwise, the continued fraction is infinite, and converges to an irrational 
number. 

The successive rational numbers [a0] = a0, [ao, a1] = ao + a [o, a1, a] = 

ao+ , etc., are called the convergents to (or of) the continued fraction. We 
(71 +- a2 

denote the convergent [ a0, al. a,]I by Pi 
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Every rational number can be expressed as a continued fraction in two ways, for 
[ao, al,. , a,,- 1] = ao, a, 2, a,,* 1,a,,, - 1, 1] if a,, > 1. For example, 

=2 + =2 + 4=2+ 1=2+ 1 

2+ l 

Observe that 0 < [ao, al, a2, a,] < 1 if and only if aO= 0. 
The successive convergents can be generated recursively by the following 

scheme: 

po = ao; qo = 1; 

P = lao + ; q =a1. 

For k ? 2, Pk = ak Pk-1 + Pk-2 and qk = akq1k-1 + qk-2 
If we begin with a real number ro, its continued fraction expansion may be 

obtained by the following scheme. 

(i) Let ao = [ro I 
(ii) Let r1 = 'e and set a, = [rl]. 

(iii) Repeat inductively, so that a1;-Lrk] and k? 1 =-k lak 
(iv) If ro is rational, then rk is an integer for some k, and the process terminates. 

Exanple. Let r0= 4. Then 

ao=[f1]=?; r= 41 1 1 

a= L 01=; r= - 1 = 4 ; 
_3 4 , 
a=2;r - =__ 4 

1a4 1 42 
4 

a3 = [3J = 3. 

Hence ~y=[0, 2,1, 3], and the convergents t yare [0] =0; [0, 2] [0, 2, 1] 1 
and 4j- 

We will use the following two standard theorems (see [3]). 

THEOREM 1. [a0, a1, ,, ] < [a0, a1, . a,,, a, + 1 ] if anrd only if n is even. 

THEOREM 2. The convergents Ck = Pk to rO sati.sfy co < C2 < C4 < * ? ro < ... < 
q k 

C5 < C3 < c1. In, other twords, {c 2k} is increasing, {C2k+1} is decreasing, and c2k < c2+1 
for all j, k. 

Theorem 2 implies the well-knowrn result that when ro is irrational, its convergents 
form two monotone sequences of rational numbers, each converging to ro. 

The following two theorems link Farey fractions with continued fractions. 

THEOREM 3. (See, for example, [1] and [2].) Ttwo sutccessive convergents 
[ao, al,. , a,,-] and [ao, al, , a,,-1, a,,] are adjacent Farey fractions. 
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Proof [a, a1, . .., a,,] = h, where p,, =a,, aP-1 + P,,-2 and q, = a,,q,,1 +q,,-2 

Thus D(n) = ' ' = p,,q,l -l p,lq, = (a,, p I + p, 2)qn,l - 
qll qll-1 

P,, - 1(a,,q,, - 1 + q,i - 9) = p,i 2 2q,) -p, q - q) -2 = p)S - 1.q)2 - 2 - qi) - 1) 

-D( - 1). Since D(1) = "' 1 '(( = + 1, an inductive argument shows that 

D(n) = + 1 if n is odd and D(n) =-1 if n is even. D 

The followving result is now readily proved. Details are left to the reader. 

THEOREM 4. The mnediant of twvo successive convergents [a0, a1,..a,,-1] and 
[ao, a1,., a,1,a,,] is [ao, a1,., a,,-,, a, 

The proof follows from the identity 

Pi, +P,,-1 (1 +a ,),-1 + ,,-2 

qi, + q,1 (1 + a,)q,1l + q,,2 

III. Solution to problem (P) We begin by establishing a result about continued 
fractions. 

PROPOSITION 3. If n is even, [a0, 1.. , a,] < [a0, a1,. , ,,-1, b,,] if and 
only if a,, < b,,; if n is odd, [ao, a1,. . . ., - 1, a,] < [ao, a. a,1, b,,] if and only if 
a,, >bl,. 

The proposition (and Theorem 1 as well) may be proved inductively by observing 
the following: Consider the expression ao + ol. Increasing the denominator, either by 

adding + to a1 or by replacing a, with a larger integer bl, makes the last term 
smaller, and hence the original expression smaller. Thus [a,, a1] > [ao, a1, a] and 
[ao,a1] > [ao, b1] if a1 < b1. Likewise, 

I ]a?o[ al, a =] < aO + ao, a,, a2, a3] and 

al,ag=:a +<a0+=[ a 

[a,aa] 0 [ 
al, a29] <a0+ 

[ b] =[ ao, a,, b2 I if a2 < b. E 

We are now ready to state our main result. 
Let 0 < a < b < 1. Suppose the continued fraction convergents of a and b are listed 

up to the terms where they first differ. Suppose the convergents of a first differ from 
the convergents of b at the kth entry. If k is even, let f1 be the last listed convergent 
of a, and let f2 be the next-to-last convergent to a. If k is odd, let f2 be the last 
listed convergent of b, and let f1 be the next-to-last listed convergent of b. Recall 
from Theorem 2 that f1 < a and b <fQ. Theorem 3 ensures that fi and f, are 
adjacent Farey fractions. Thus the interval (a, b) is "trapped" by the Farey interval 
(f1, f2). 

THEOREM 5. F(a, b) is the mtediaittfl ef2 off1 andf2 iffi ($f2 is not equtal to a or 
b. Otherwise, an additional Farey addition. is needed to obtain F(a, b). 

Proof: The proof uses Theorem 1, Theorem 2, Theorem 4, and Proposition 3. For 
example, suppose the lists of convergents first differ at entr-y n. + 1, an even number. 
Then f2 = [ao, a. a,,] and f1 = [ao, a1.a. , s], where f1 is a common conver- 
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gent to the endpoints a and b, and f2 is a convergent to a. Suppose the convergent 
to b following f2 is [ao, a.... a, k]. By Theorem 2, fA <f9, SO that s <k from 
Theoremn 1. Now f1 (Df, = [aO, a1. . , , a,1] from Theorem 4. Observe that fA (f2 
can also be written [a0, a1,..., a,, s + 1]. Using Theoremn 2 again we obtain 

b >ao,al, ,a,,Ik] 2 [a0,a1,...,a,, s+ 1] =fi (if9. 

Let [ao, al,... a,, s, d] be the convergent to a following fl. Since n is odd and d> 1, 
Proposition 3 implies that 

a < lao, al,.a,, s,d] < [ao,al,. a, s 1]=fi Df2. 

Thus a <fi1 (D f_ < b. Now fA (D f_ is in the closed interval [a, b]; moreover, [a, b] c 
(fi, f2), and F(f1,f) =fi f, SO F(a, b) =ff1 unless AD f2 = a or b. In this 
case, at least one more Farey addition is necessary. (If this happens, at least one of a 
and b must be rational.) D 

Exa7mple. Let a = 0.56 = 95 and b = 0.62 = . Find F(a, b). 

(i) Write the continued fraction convergents of a and b up to the point where they 
first differ. 

Level 0 a: [0]= 0 b: [0]= 0 

1 [0,1]=1 [0,1]=1 

2 [0,1,1]=, [0,1,1]=+ 

3 [0,1,1,3]= 4 [0,1,1,1] 
2 

(ii) The convergents first differ on level 3, so A = f and f2 = 
(iii) Compute fl (Df3j: + D = 

(iv) Since f, (Df2 is not an endpoint, F(a, b) =fi ef, 
We conclude that F(0.56, 0.62) = 3 

Example. a = 1; b = 5. Find F(a, b). 

Level 0 a: [0] = 0 b: [O] = 0 

1 [0,4]= = [0,3]=3 

Thus fA = f, = 3, and f 2 = = . So another Farey addition gives E = = 

F(a, b). 

COROLLARY 1. [See Proposition 2, Section I.] If 0 < b < 1, then F(M, b) = j. 
Ib +1 

P-oof 0 = [0] and b = [?, a]..] so f = and f2 = [, T]] L 1 The con- 
clusion follows after Farey adding. b K 

We observe that if a and b are reduced fractions and F(a, b) = a (D b, then a and 
14 ~~~31 b need not be adjacent Farey fractions. The example a = 5 and b= 5 computed 

above shows that F(a, b) = 3 = 14 
D 31, but 14 31 = 75. 5 25 50, 25 50 

The reader is now invited to solve the case at the beginning of this article: What is 
F( 194,)? \94 76G} 
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Math Bite: On n'/n > (n + 1)11(n+l) n>3 

Let a,= 'n = 1, 2,. The familiar fact 

I, Clt, > a,,1+,1, n 2 3 

is usually proved by proving more (see, e.g., [1]): 

(1 + 1/n)' < 3. 

But I, is immediate from the inequality 

b 1 +1 )( 11 ) 
J,: b a a~) bn,1, 'n?>2, 

which simply asserts that 

Cl = Cl > l+1 -,,- 1 n n 1 na + >a, 1a = -. 

That b,_ > 1 (n. > 3), as required, follows from J, and 

b2 < 1 < b3, 

whaichl, thanks to a4 = a2, is implicit in J3: 0 < Jb <b3(= b2). 
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 The Randomness of Remainders

 D. A. MORAN

 B. M. STEWART'
 Michigan State University

 East Lansing, MI 48824

 The Monte Carlo simulation technique, used for statistical predictions of numerical
 data in complex models of scientific situations, depends on a constant supply of a long
 stream of random numbers. Highly sophisticated computer programs have been
 devised to generate such a supply and (sometimes after long usage) the numbers
 generated by the program often prove to be not so random after all. For example, in
 an article in Physics Review Letters a few years ago (December 7, 1992), it was
 reported that five of the most widely-used random number generators produced
 errors when applied to a model of the behavior of atoms in a magnetic ciystal.

 Some random number generators contain a process wherein a stream of digits is
 added together, then divided into some large number, and the remainder used to

 compute further digits in the next step of the process. A little experimentation might
 well convince the casual observer of the unpredictability (and hence, presumably, the
 randomness) of this sort of calculation. For example, if 1,000,001 is divided by the
 integers 1234, 1235,...,1250, the following remainders result: 461, 886, 77, 505, 935,
 128, 561, 996, 191, 629, 1069, 266, 709, 1159, 353, 801 and 1. These numbers appear
 to be spread quite uniformly over the interval [0, 1250], even though the divisors are
 so regular. A few computations such as this might lead the experimenter astray.

 Bad gutess. A pretty good way to find k random integers in the interval [O, n] might
 be to divide some large number by the integers n - k, n - k + 1, n - k + 2, n
 and look at the remainders.

 In fact this guess can be spectacttlarly bad, as illustrated in the folloNving table,
 which gives the remainder when 2101 is divided by 234 + k:

 k Remainder

 1 8,589,934,592 = 233
 2 17,179,896,182 = 234 - 2
 3 8,589,934,580

 4 17,179,869,156

 k Remainder

 5 8,589,934,532

 99 8,589,886,082

 100 17,179,369,286

 Indeed, the table could be carried more than a thousand entries further before the
 remainders lost their "look-alike" quality. Hardly a random set of numbers!

 The unexpected regularity of these data is hinted at by the entries in the first two
 rows of the table; the dividend, divisors, and remainders are all near a power of 2. As
 it turns out, the number 2 is not important in this regard; any larger integer M will
 play the same role, if the exponents are chosen properly.

 General result. Let M be an integer greater than 1. Whenl A1\ - is divided by
 integers in the vicinity of Ma (a >> b), the remainders in the division are grouped

 together in clusters near numbers whose locations are calculable in advance. The

 l-Professor Stewart died on April 15, 1994.
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 number of clusters is exactly the number of quadratic residues mod M l (except in a
 few singular cases).

 (The nonnegative number t (t < n.) is said to be a qtadratic residute mod 1. if the
 congruence x 2 = t mod n lhas a solution. For example 0, 1, 4, 5, 6, 9 are the quadratic
 residues mod 10.) In the above example, a = 34, b = 1 and 3a - b = 101; there are
 only two quadratic residues mod 21, so the remainders are clustered about two

 numbers (233 and 234). If we were to examine the division of 2101 by integers in the
 vicinity of 235 (so that now a = 35, b = 4), we would obtain four classes of look-
 alike remainders corresponding to the four distinct quadratic residues modulo 24
 (i.e., mod 16).

 The result can be derived by carefully scrutinizing the size of the remainder R that
 results when M3a-b is divided by a number of the form Al/a + k, where 0 < k3 < AM I.
 By long division, we find that:

 M3" = ( Ma + k)( M2a - kAMIa + k2) - k3. (1)

 Now suppose that k2 t (mod M b), where 0< t <MAlb, so that t is a quadratic
 residue mod M b. (We'll consider the case t = 0 later.) Then k 2- t = 1nA/Ib for some
 tt, 0 <.It < M b. Now rewrite (1) in the form

 Al3a = (Ma + k)(AI2a - kAla + k2 t) k3 + (Alla + k)t.

 Multiplying each side by Alb-b yields

 M3a-b = ( Alla + k)( A12- - bkA- kM a-b + tt) + R,

 where R = (AlIa + k)tM-b - k3A-b. We wish to show that 0 < R < Alla + k. First,
 t < Mb, so tM-b < 1, and R < Alla + k. Now k3 < Alla, so k3M-b < AJa-b. Since
 t > 0, i.e., t > 1, we have

 (Ma + k)tM-b > (Ma + k) Af-b > MAMb = Ma-b.

 Tlhus

 (Ml" + k)tAlb - k3AIlb > Ma' - Ma-b = 0.

 The dominant term in the remainder R is (Ma + k)tM-b, because a >> b and
 k3 < Ma. If the values of k are veiy small compared to M", the clustering of the
 resulting remainders is very dramatic, as in the example.

 If we examine the dominant term (Ma + k)tAlb- found above, we note that
 different values of t (i.e., different quadratic residues mod Mb) will give different
 clusterings of remainders, again because a >> b. The clusters will be in the vicinity of
 the numbers tMa -b, one cluster for each quadratic residue t (mod Mb), t > 0.

 It remains to examine what happens if k2 = 0 (mod AIb). In this case, k2 = utAllb
 for some 2l, 0 <aIl < M b, and we now rewrite (1) in the form

 M3U = (AIa + k)(M2a -kM + k2 -Alb) -k3 + (A + k)Mb.

 Now, multiplying each side by M-b yields

 M3a-b = (Ma +k)(M2-b -kMa-b + (2l-1)) +R,

 where R = (Aa + k) - k3.

 In this case, it is clear that R < Ma + k and R > 0 because k3 < A/p, so the
 remainders cluster around Ma.
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 This completes the proof that the remainder R is dominated by one of the numbers
 Ma or tMa-b, resulting in "look-alike" remainders. It should be noted that the
 clusters of remainders about Ma (for t = 0) and Ma-b (for t = 1) are distinct because
 a > b, and that k << Mb, for otherwise it might happen that tMa-b - Ma, and the
 clusters for t = 0 and t = 1 would coalesce.

 The above analysis shows that small perturbations in a divisor can sometimes cause
 quite predictable changes in the remainder, so it is not always a good idea to depend
 on long division to try to produce randomness. Incidentally, this idea might be of
 some use in identifying intervals of integers that contain no divisors of Mersenne
 numbers, Fermat numbers, and other numbers near large powers of small integers.

 Acknowledgment. I thank the referee for helpful suggestions.

 Proof Without Words: Area Under a Polygonal Arch

 The area under the polygonal arch generated by a regular polygon rolling along a
 straight line is three times the area of the polygon.

 COROLLARY. The area under one arch of a cycloid is three times the area of the
 generating circle.

 PHILIP R. MALLINSON

 PHILLIPS EXETER ACADEMY

 EXETER, NH 03833-2460
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This completes the proof that the remainder R is dominated by one of the numbers 
Ma or tMa-b, resulting in "look-alike" remainders. It should be noted that the 
clusters of remainders about Ma (for t = 0) and Ma-b (for t = 1) are distinct because 
a > b, and that k << Mb, for otherwise it might happen that tMa-b - Ma, and the 
clusters for t = 0 and t = 1 would coalesce. 

The above analysis shows that small perturbations in a divisor can sometimes cause 
quite predictable changes in the remainder, so it is not always a good idea to depend 
on long division to try to produce randomness. Incidentally, this idea might be of 
some use in identifying intervals of integers that contain no divisors of Mersenne 
numbers, Fermat numbers, and other numbers near large powers of small integers. 

Acknowledgment. I thank the referee for helpful suggestions. 

Proof Without Words: Area Under a Polygonal Arch 

The area under the polygonal arch generated by a regular polygon rolling along a 
straight line is three times the area of the polygon. 

COROLLARY. The area under one arch of a cycloid is three times the area of the 
generating circle. 

PHILIP R. MALLINSON 

PHILLIPS EXETER ACADEMY 

EXETER, NH 03833-2460 
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P ROBeL EMS 

GEORGE T. GILBERT, Editor 
Texas Christian University 

ZE-LI DOU, KEN RICHARDSON, and SUSAN G. STAPLES, Assistant Editors 
Texas Christian University 

Proposals 
To be considered for publication, solutions 
should be received by September 1, 1998. 

1544. Proposed by 1996 MathCaminp Students, University of Washington. 

Let a0 be a positive integer and let 

(ak + 1 if ak is odd, 
ak+] = \ak2 if a1 is even. 

Find a nonrecursive expression in terms of a0 for the smallest positive integer k such 
that ak = 1. 

1545. Proposed by Erwin Just, Professor Emeritus, Bronx Commurnity College, 
Bronx, New York. 

Let k be a positive integer. Prove that there exists an infinite, monotone increasing 
sequence of integers (a,,) such that a,, divides ac+1 + k and a ,+ divides a 2 + k for 
all n ? 1. 

1546. Proposed by Benjinin G. Klein, Davidson. College, Davidson, North Car- 
olina, and Arthur L. Holshotuser, Charlotte, North Carolina. 

Given y > 1, let P be the set of all real polynomials p(x) with nonnegative 
coefficielnts that satisfy p(l) = 1 and p(3) = y. Prove there exists po(x) E P such that 

(i) {p(2): p(x) E PI = (1, po(2)]; 
(ii) if p(x) E P and p(2) = po(2), then p(x) = po(x). 

WlVe invite readers to submit pr-oblem72s believed to be n2ewt an1d appealing to students and teachers of 
aclvanced uiticlergi-adulate mathematics. Proposalls must, in general, be accomiipaniiecl by solutions and by aniy 
bibliogriaphlical information, that wvill assist the editors ancdi referees. A problem7z submitted as a Qluickie 
should have ani 1uniiexpectec, succinct sollutioni. 

Sollutionis sholuld be wtritten. in. a style appropriatefor this MAGAZINE. Each solution sholtld begini onl. a 
separate sheet containin.g the solver's n2am7ze ani dfi.ll addiress. 

Sollutionis an1d n2etv proposals shzould be )llailed to George T. Gilbert, Problem72s Eclito- Department of 
Mathemiiatics, Box 298900, Texas Christian Uniiversity, Fort Worth, TX 76129, or mnrailed electron.ically 
(ideally as a LATEX file) to g.gilbert@tcu.edu. Readers tvlho tuse e-miiail sholild also provide an 
e-mizail ac/cress. 
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1547. Proposed by Homer White, Georgetown College, Georgetown, Kentucky, acnd 
Robert Bailey, Lexington, Kenttucky. 

Consider the function 

3i 2 if n is even, 
f(n) 

2 
3n+ f 
3n 2 I 

f n iS odd. 

Let N > 1 be a positive integer, and define a,(i) to be the remainder when the ith 
iterate of f, f (?)(n), is divided by N. Prove that, for any n 2 1, the sequence 
(a1i))i > , is not periodic. 

1548. Proposed by Ken Richardlson, Texas Christian University, Fort Wor-th, Texas. 

Let D be a convex domain in the plane, and suppose that its boundary curve a is 
piecewise C2. Imagine that a fence is built along the boundary, and that a rope of 
length L is attached to the outside of the fence at a point along the boundary. By 
pulling on the rope so that it is taut but constrained to remain outside D, a new curve 
,B is traced out by the end of the rope. Assuming that L is at least half of the length of 
the curve a, is it true that the curve ,B determines the culve a? 

Qu ickies 
Answers to the Quickies are on page 150. 

Q877. Proposed by Eugene W. Sard, Huntington, New York. 

An American League baseball player noticed that after he got his 50th career hit 
against the Yankees, his career batting average rose by exactly .0005. What was his 
most likely batting average before this last hit? 

(Batting average is the number of hits divided by the number of official at bats, 
which include hits.) 

Q878. Proposed by Charles Vanden. Eynden, Illinois State University, Normal, 
Illinois. 

Let c(n) be the number of ways of tiling a 2' X 2' checkerboard with 1 x 2 tiles. 
Evaluate 

li lnln c('n ) 
l n 

Q879. Proposed by Jan Mycielski, University of Colorado at Botulder, Boulder, 
Colorado. 

A sphere S (in R3) intersects a sphere B of radius 1. Furthermore, S passes 
through the center of B. Show that the surface area of that part of S lying inside B is 
independent of the radius of S. 
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Solutions 

Symmetry of a Doubly-indexed Sequence April 1997 

1519. Proposed by Saml Northshield, SUNY, Plattsbnrgh, New York. 

Given a sequence (a,,),, > 1, let Aoj = 1 and 

Aij= H (I +jak) 
l</;<i 

for *positive i and nonnegative j. What sequences (a,,) satisfy A,1 = Aj, for all 
nonnegative i and j? 
Solution by Howard Morris, Gernantown, Tennessee. 

The sequence may start with any a1 that is not the reciprocal of a negative integer. 
The other terms are given by 

a1 
a, + (n- -)l 

From 

1 + na1 =An =AA,11 =A,1 l(1 + a,) =A1,1,-(1 + a,) = (1 + (n - 1)al)(1 + a,), 

it follows that a1 is not the reciprocal of a negative integer and that 

a1 

a,- I+ ('- )a 

To prove that such a sequence implies Aj = Aji, there is no loss of generality in 
assuming i >j. Then 

1+(j+k-I)a1 k=H (i?k-l)a 

iJ- k i I + (k - __ _ al 1 1+?j 
HI1?(k1- )al 
k=l 

0 

H1 + (i + k - )a H 1 + (i + k - 1)a1 

IH+?(k - )al H I1?(k -1)al 
k=1 k=j?l 

i 1+(i+k-1)a1 
k=1 1 + (k- 1)al - i 

as required. 

Also solved by Vic Abad, Cai Bo (Australia), Sabin Caiutis (Canada), John. Christopher, Daniele Donini 
(Italy), Thomnas Jager, Ioana 11Mihaila, Catn A. Minzh (gradutate student), R. P. Sealy (Caniada), Yong.zhi 
Yang, and the proposer. Thiere wsere two incomz,plete solutions. 
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Loci for Symmetric Conditions in a Triangle April 1997 

1520. Proposed by Victor Kutsenok, St. Francis College, Fort Way'ne, Indiana. 

(a) Given points A and B in the plane, describe the set of points C in the plane 
such that A, B, and C form a triangle satisfying amaii, = brnb, where a = BC, b =AC, 
and ina and nlb are the lengths of the medians from A and B respectively; 

(b) Given points A and B in the plane, describe the set of points C in the plane 
such that A, B, and C form a triangle satisfying al, = blb, where l(1 and 1b are the 
lengths of the angle bisectors from A and B respectively. 

I. Soluition by Paul Yih, Florida Atlantic University, Boca Raton, Florida. 
Clearly, in both cases, the point C can be chosen on the perpendicular bisector of 

the segment AB. Thus, we shall henceforth assume a 7 b and let c = AB. 
(a) The medians In, and mnb satisfy 

2=1 and 1 2+ 2 lTia=T(2b+2c-a) an m= (2a 2+2c2-b2) 

From the relation ana = bllb, we obtain 

(a2 - b2)( a2+ b2 - 2c2) = 0. 

Since a o b, we must have a2 + b2 = 2c2. From this, 1m12 = 3c2/4, and C lies on the 
circle with center at the midpoint of AB and radius AB * 3/2. 

(b) Let a, ,B, and y denote the measures of the angles A, B, and C, respectively. 
The angle bisectors have lengths given by 

2bc a 2ac 1, 
a b+ccos2 lba+ccos2 

Now, alai = blb if and only if 

a 16 
cos - cos 2 2 2 _ 

b +c c c+a 

By the law of sines, this equation is equivalent to 

a 1 
2e 2 cos- 2 cos- - 

sin ,B + sin y sin y + sin a' 

We obtain 
a a 

cos 2 cos-2 1 
=~~~~ I 

sin ,B + sin PY 2 in + )' co 1-t) o 3r 
22 si cOS 2 cos 

for the left-hand side, and similarly 1/(2 cos 2 2) on the right-hand side. It follows 
that 

cos 2 = cos 2 

and 1 + - a). Since a 0 b, we must choose the positive sign, and obtain 
a + ,1 = 2y. This means y = 60?, and C lies on the major arc of the circumcircle of 
one of the two equilateral triangles on AB. 
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II. Solution by David Zhu, Jet Propulsion Laboratory, Pasaclena, Californita. 
(a) Choose a coordinate system so that A = (-c/2, 0) and B = (c/2, 0). If C = 

(x,yC), 

a2 = - C)2 + y 

b ( + 2)+ y2 

xe2 = ( 2 / +(Y) a71 (xc2 ?~2 ( 2, 

9i2 (xC/2 )2 2() 

Then a 2m2 = b2m-2, can be simplified to 

X((X2 + 2) _ c2) = o. 

Thus the set of points C is on the pelrendicular bisector of AB and the circle 
centered at the midpoint of AB with radius F /2 times the length of AB. 

(b) Let i A = a, i B = ,, and AB = c. Using the law of sines, 
c sin a 

sin(a+/3)' 

b= csin , 
sin(a+/3)' 

c sin , 
la sin( a/2+/3)' 

c sin a 
b sin( a+ ,/2) 

Then ala = blb is reduced to 

sin( ae+ 2 = sint 2 

hence 

a= ,ora+,- 3 

Thus, the set of points C is on the perpendicular bisector of AB and the 60? arcs 
about chord AB. 

Al.so solved by Sabiii. Caluiti.s (Caniada), Danjiele Donini (Italy), Ragara- Dybvik (Norgay), A'Iilton. P. 
Ei.sner (pairt (a)), H. Gluggenheimiier, Howa-rd Cary Alorris, Volkharcl Schinidler- (Gennany), Miclhael 
Votwe (Swvitzerlanid), and the propo.ser. Thiere wva.s one incorrect soltution. 

A Difference of Powers Functional Equation April 1997 

1521. Proposed by Wiu Wei Chao, He Nan Normal University, Xin Xiarng City, He 
Nan Province, China. 

Let a function f: R - 1R satisfy 

f(x1 - y") =( x -y) [f( x) -i +f( x)"-2f( y) + +f( x)f(Ay)2 +f(y)''] 
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Prove that f(rx) = if(x) for all rational r and all real x. 

Soluttion by John Baker anad John Lawrence, University of Waterloo, Waterloo, 
Ontdario, Canada. 

We will show that the only functions satisfying the given frLnctional equation are 
f(x) =x, f(x) = O for n > 2, f(x)= -x for n even, and f(x)=cx for n =2. It is 
easy to verify that such functions satisfy the given. 

To show there are no other functions, begin by setting x = y to see that f(O) = 0. 
Next, set y = 0 to obtain f(x") = xf(x)''-' and x = 0 to obtain ff-yjI) = f(y)''- . 
These combine to yield that f(-x) = -f(x) for all x E R. 

Assume first that n is even. Then 

0=f( x' -y) -f(x - ( -Y)) 

= 2( -f ( y ) - yf ( x ))f [( X) 
n -2 +f( Xy -4f( Y)2 + . 

+f ( Y) ,-2] 

Note that each term in the square brackets is an even power. If there exists a such 
that f(a) 7 0, it follows that xf(a) - af(x) = 0, or f(x) = (f(a)/a)x. From f(1') = 
1 *fM(1)"- , we see that f(x) = x orf(x) =-x, unless n = 2, in which case there is no 
restriction on f(a)/a. 

Now assume that n is odd. Let F= {ac E R: f(ax) = af(x) for all x E R). We 
want to show that Q c F and ultimately that F = R. Clearly, 0, ? 1 E F and F is 
closed under multiplication and reciprocation. It remains to show that F is closed 
under addition. We show first that F is closed under taking nth roots. For a e F, 

axf( x) 1 = a_f() =f(fax) f(( a1/'x)) = a 1/ xf( ac1/ x) n-i 

Noting that f(x ") = xf(x)' also implies f(x) 2 0 for x > 0 and f(x) < 0 for x < 0, 
it follows that ff a l/ " x) = al/ f(x). Setting a = ac / and b = '/", the closure of F 
under addition now follows from 

f(a(o + ) x") 

=f(( '- (-b(x)) 

=(ax+ bx)[f(ax) -f(a) f(b) + -f(ax)f(bx)2 +f(bx) ] 

= (a + b)x (a'-1 _ -a2b + ... - ab 1 -2 + b'- )f(x) "- 

= ( a+ ,8)xf(x)' = ( a+ /3)f(x"). 

Having shown that QU c F, we now show that F is continuous on R. We begin by 
showing continuity at 0. If x > y > 0, then 

f(x - ) - f(xll + yJ) 
x -y x+ y 

= 2[f( x) 2f( y) +f( Xy -4f( Y)3 + +f x)f( y)2] 2 0 

so that 

O<f(xI+y ) Y< (xy). x-y Y" 
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Replace x and y with (1 + x)'1/" and x' respectively, x ? 0, to obtain 

0 < (I1 + 2 2) < ( X)1/1, + l/ 
(1 

The right-hand side of this last inequality is bounded on any finite interval, hence 
f(x) is bounded above by some constant M on the interval [1,2]. Now for 1/2k < 
x < 1/2k- 1, k a positive integer, f( x) =f(2kx)/2k < M/2lk. Because f is odd, we 
conclude that limx - Of(x) = 0. From the given functional equation, 

lim f( x -y) 
0 

=i ii(X-_y) f(X) n-l +f ),,2f(y) + -I-f+(X)f(y)n2 ?f(y)' 

=xf(x)'-l =AXn)- 

Therefore, f is continuous on DR. Because f(x) = xf(l) for x E F and F is dense in R, 
it follows that f(x) = xf(l) for x e R. Finally, again from f(1') = 1 f(l)', we 
conclude that f(x) = x or, if n > 1, f(x) = 0. 

Also solved by Cai Bo (Australia), Sabiti, Cauttis (Canzada), Daniele Donini (Italy), Thomas Jager, andl 
the proposer. 

A Constrained Trigonometric Inequality April 1997 

1522. Proposed by Bogdaan Kotkowski, Kent State University, Tuscarawas Camiptts, 
New Philadelphia, Ohio. 

Prove that if 

cos2a + cos2 ,8 + cos2 y + 2cos a cos 8 cos y = 1 

and two of the expressions 

cos a cos 8 + cos y, cos 8 cos y + cos ae, cos y cos a + cos/3 

are positive, then the third expression is also. Moreover, if ae, /3, and y are positive 
numbers less than 7T, then ae + /8 + y= 7=. 

Solution by Thomnas Jager, Calvin College, Grand Rapids, Michigan. 
Without loss of generality, suppose the first two expressions are positive. Then, 

0 < (cos ae cos 3 + cos y)(cos / cos 7+ cos a) 

- (cos2 /8 + l)cos ae cos y + cos /8(cos2 2a + cos2 y) 

- (cos2 /8 + l)cos ae cos y+ cos /8(1 - cos2 / - 2cos aecos /3cos y) 

(1 - cos2 /8 )(cos at cos y + cos 8 ). 

Because 1 -cos2 /8 ? 0, it follows that cos ae cos y + cos /8 is positive. 
Suppose, in addition, that 0 < ae, /3, y < -g. Applying the quadratic formula to the 

equation produces 

cosy= -cos ae cos 8 + (i - cos2 a)( - cos2 /8) =-cos ae cos 8 + sin ae sin /8. 
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Since cos ae cos /8 + cos y is positive, 

cos y = -cos ae cos / + sin ae sin /8 = cos( 7- (a + /3)). 

Suppose '- < a + 8 < 2 7. Then, -7 < 7 -(c( + 8) < 0, soy = (a + /8)- -. Hence, 
cos y cos /8 + cos ae = cos y cos /8 - cos(y - /8) = - sin y sin /8 < 0, which is false. 
Thus, 0 < a + ?8 < -, so that 0 < 7T- (a + /3) < 7- and y= -r- (a + /8). 

Also solved by Cai Bo (Australia), Sabini. Cautis (Canada), Daniele Donini (Italy), S. A. Greenspan, 
Robert Heller, Murray S. KlMakin. (Cantada), Victor Y. Kittsenok, Kee-Wa.i Lanc (Honig Konig), Ioania 
MAihaila, Cani A. Minlh (graduate student), P. E. Nijesch (Swvitzer-lantid), Allan., Pedersen (Denmalrkc), 
Michlael Vowve (Switzerland), David Zh1ut, and the proposer. Ther^e w6.as oae incorrect solution. 

A Maclaurin Series with Integral Coefficients April 1997 

1523. Proposed by Emneric Deutsch, Polytechnic University, Brooklyn, New York. 

Let in and n be positive integers. Show that the Maclaurin series expansion of 

2 /1-mnx .i1~ ars ( 3x/~ nx3 2 li 3 112 (i x3 U f(x) =-F3 n 3 sin arcsin 2 3 1?})1 

has integer coefficients. 

I. Solution by Daniele Donini, Bertinoro, Italy. 
The domain of f(x), as it is defined, is an interval I = (0, 8], with 8 > 0 depending 

on in and n. Let x E I. Applying the formula sin 3 = 3 sin a - 4 sin3 , one may 
verify that f( x) satisfies 

nx3f( X)3 -(1- mx)f( x) + 1=, (1) 

so that g(x,f(x))=0, where g(x,y)= nx3y3-(1-m,x)y+1. Since g(0,1)=0 
and dg/dy(O, 1) = - 1 0 0, the implicit function theorem assures that f(x) may be 
extended to a real analytic function in a neighborhood of x = 0. Let f(x) = K= ak X ak 
be the Maclaurin series expansion of f(x). Substituting into (1), we have 

(1 - ao) + (nao - a1) x + (mal - a2) X2 
co 

+ E (m1ak-a a + n aiajal xk = o, 
k =?3 i+j+l=k-3 

or, equivalently, 

ao =l,a l = m,a =mI,a m 
ak=1 + n E a,aja,, for k 2 3. 

+j+ 1 =k -3 

Thus, a1 is a positive integer for every k. 

II. Soltdion by Paul Bracken, Centre dle Recherches Mathenatiqttes, Montreal, 
Qtt6bec, Canada. 

We show, more generally, that the Maclaurin series expansion of 

2 / tx . j 1 3 |'3; | 34 2 X =-mx sin (1arcsii-i (2x~ f( - si \3 
ax3n 2 (1- }})2P+' 

has integer coefficients for all nonnegative integers p. 
Set 

0= arcsin ( 9 1 - { ' 2J+i )* 
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Then the identity sin 0 = 3 sin(0/3) - 4 sin((0/3) leads to the equation 

n'3 f(X)3 _f(X) + ( =0. 

For v, w, and y satisfying 

wtyq-y+v=0,or wt= y 

we wish to find the power series expansion of y in terms of w (and v) about the point 
= 0, y = v. The general Lagrange series expansion of w - wv = (y - y0)/g(y), 

g(wo) 0 0, about w = wo, y = yo, is given by 

tJ=Yo+ E k!( k-1 g( y)k ) (t- _o)k 

(see T. J. I. Bromwich, An Introduction to the Th-eory of Infinite Series, 1947, p. 159, 
or M. Abramowitz and C. Stegun, Handlbook of Mathematical Functions with Fornutt- 
las, Graphs, and Mathematical Tables, 9th printing, 1972, p. 14). Applied to our 
situation, this yields 

k= 1 
( 

dy Y=v / 

v+ , l(1 k(q -l)+l1 k 
k=i ki 

Now, the identity 

It kq 8_kq +1 I kq 

shows that (kq I)7k is an integer. Because the Maclaurin series expansions of 

nx3/(1 - mx) and (1 - mx)- have integral coefficients, the former wvith no constant 
term, substituting for v and w and expanding shows that the Maclaurin series of f in 
terms of x has integral coefficients. 

Also solved by Thlomiias Jager, Hans Kappus (Switzerland), Peter- W. Lindlstrorn, Howtvarld Ca7ry Morris, 
Michael Votwe (Switzerland), an.d the proposer. 

Answers 
Solutions to the Quickies on page 143. 

A877. Letting h and a denote the number of hits and official at bats before the last 
hit. Then 

h+1 h 1 
a + 1 a 2000 

Solving for h yields h = a(1999 - )/2000. Since h > 0, it follows that 16 divides one 
of the positive integers a and 1999 - a, and that 125 divides the other. Thus, we may 
write a and 1999 - a as 16in and 125n, in some order. Since 16min + 125n = 1999, we 
have 0 < n < 16 and - 3n 15 (mod 16), hence n -5 (mod 16). Therefore, 'n = 11 
and in = 39. There are two possibilities: a = 1375 and h = 429, a batting average of 
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.312, or a = 624 and h = 429, a batting average of .6875. No major league batter has 
approached the latter average over even half as many at bats (the modern major 
league record for one season is .424, set by Rogers Hornsby in 1924 in 536 at bats); 
thus, the second answer is highly improbable. 

A878. We show that 

lim lnln c(n) = n 4. 
fl-400 n 

There are two ways to tile a 2 X 2 square. Dividing a 2'" X 2" checkerboard into 
4'7-12 X 2 squares, we see that 2 4' < c(n). On the other hand, there are at most 4 
ways a 1 X 2 tile can cover a square of the checkerboard in such a tiling. Thus, 
c(n) < 44 . Taking logarithms twice yields 

(n - 1)In4 + lnln2 < lnln c(n) < n ln4 + lnln4. 
The desired limit follows from dividing by n and letting n approach co. 

A879. I. Let r be the radius of S and let ae be the angle formed by the line segment 
between the centers of the two spheres and any radius from the center of S to a point 
on the intersection of S and B. Then, by the law of cosines, 1 = 2r2 - 2ri cos ae = 
2r2(1 - cos ae). The area of S inside B equals 

(27r sin 0) rdO = 2 7Tr2(1 - cos ) =7T 

0~~~~~~~~~~~~~ 

B~~~~~~~~~~~~ 

II. We will use the theorem of Archimedes that the projection of S to the surface of 
a circumscribed cylinder preserves areas. Let r be the radius of S, and let y be the 
radius of the intersection of S and B. Let h be the height of the projection of the part 
of S lying inside B to the circumscribed cylinder parallel to the segment between the 
centers of S and B, as in the diagram. We have y2 + h2 = l and y2 + (r - h)2 = r2. 
Solving these equations for h, we get h = 1/(2r). The area of that part of S lying 
inside B equals that of the projection, which is 27Trh = 7T. 

B X. 
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 REVI EWS

 PAUL J. CAMPBELL, editor
 Beloit College

 1997-98: Universitat Augsburg,

 Germany

 Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles and books are selected for

 this section to call attention to interesting mathematical exposition that occurs outside the

 mainstream of mathematics literature. Readers are invited to suggest items for review to

 the editors.

 GIMPS discovers 37th known Mersenne prime, 23021377 -1 is now the largest known prime,
 http: //www. mersenne. org/3021377. htm . Rae-Dupree, Janet, Student hits math jackpot,

 San Jose Mercury News (2 February 1998) http://www.sjmercury.com/scitech/center/
 primeO2O398.htm . Caldwell, Chris K., The art of giant slaying is refined: GIMPS finds

 23021377 -1 is prime, http://www.utm.edu/research/primes/notes/3021377/

 Another year, another Mersenne prime, found by an even larger team of computers (4,000).

 This time, the newsworthy aspect was that the winning candidate turned out to be tested
 on the computer of a college student. Can we say that he discovered it? Or did he just win a
 kind of lottery? For the 38th Mersenne prime, it really will be like a lottery: The person on

 whose computer it is found will win max{ $1000, $1 x (number of digits)/1000 }, thanks to
 Scott Kurowski, author of the software used. If there are infinitely many Mersenne primes,
 eventually every participant should win!

 Forbes, Tony, Ten primes: A search for ten consecutive primes in arithmetic progression,

 http://www.ltkz.demon.co.uk/ar2/10primes.htm.

 Recently, it has been hard to keep up with progress in consecutive primes in arithmetic

 progression. Only in 1995 was the first sequence of seven discovered; in late 1997, a sequence
 of eight was found; and early in 1998, a set of nine was discovered (along with 27 new sets
 of eight and hundreds of sets of seven, thereby greatly cheapening sets of seven or eight).
 We refrain from printing the 92-digit starting prime (the common difference is only 210),
 especially since the hunt is already on for a set of ten. Leader Forbes expects to have to
 try about 3 x 1015 candidates, which would take about 250,000 years on a typical PC. But,
 like the search for the set of nine, this will be a distributed effort running in the spare
 time of collaborators' computers. If this search had as many collaborators as GIMPS (fat
 chance!-no prize money here), it would take only about 6 years. So, the next several
 times that somebody on the street asks you what the record is for consecutive primes in
 progression, you can be confident of probably being right if you say "9."

 Corry, Leo, Jiirgen Renn, and John Stackel, Belated decision in the Hilbert-Einstein priority
 dispute, Science 278 (14 November 1997) 1270-1273.

 Perhaps forgotten by many mathematicians is Hilbert's great interest in physics. At almost
 the same time as Einstein, he published the theory of general relativity. Examination of the
 proofs of Hilbert's paper, however, reveals that he added crucial elements in proof, perhaps
 after seeing Einstein's results; they had consulted frequently on the problem.

 152

This content downloaded from 159.178.22.27 on Thu, 23 Jun 2016 12:36:38 UTC
All use subject to http://about.jstor.org/terms



 VOL. 71, NO. 2, APRIL 1998 153

 Hayes, Brian, The invention of the genetic code, American Scientist (January-February
 1998). Also available at http://www.amsci.org/amsci/issues/Comsci98/compsci9801/

 html.

 This article recounts the code-breaking attempts that followed Watson and Crick's discovery

 of the double helix of DNA. The question was, how did the sequence of bases in DNA
 code for amino acids? There are 4 kinds of bases and 20 kinds of amino acids. A code
 whose codewords (codons) consist of three consecutive bases provides 23 = 64 different
 codewords, far more than the 20 needed. Physicists George Gamow, Edward Teller, and

 Richard Feynman all proposed such codes that were overlapping, meaning that each base
 was a part of three consecutive codeword of three bases each. In most of these ingenious

 attempts, the 64 codons sorted themselves into exactly 20 families. All of these codes were
 ruled out by experimental evidence. In 1957, Crick proposed a comma-free code, in which,

 of the three codons that each base belongs to, only one holds biochemical meaning and
 the other two must be nonsense. The codons AAA, CCC, GGG, and UUU would have to

 be nonsense; the remaining 60 codons are factored by cyclic permutation into 20 groups,

 but only one in each group could be meaningful. Another beautiful theory! But in 1961
 it was discovered that UUU does code for an amino acid. By 1965, the genetic code was
 mostly solved, by laboratory work. It turned out to be fairly redundant (hence tolerant of
 mutations): Some amino acids are coded for by as many as six codons. This is a fascinating

 tale of "intellectual elegance" vs. reality; the proposed mathematical models were not the
 solution to the original problem but did lead to fruitful mathematical research into codes.

 Bogomolny, Alex, Cut the knot! An interactive column using Java applets, http: //www.

 maa.org/editorial/knot/ . Interactive Mathematics Miscellany and Puzzles, http://

 www. cut-the-not . com/.

 MAA Online, the presence of the MAA on the Worldwide Web, features several regular
 columns, most of which have been reviewed here earlier. Here we look at a relatively
 new column, intended mainly for teachers, students, and parents. Each monthly edition

 contains a puzzle or problem simulation in the form of a Java applet (a program, downloaded
 automatically, that makes the screen of your Web browser change dynamically with your

 input). Recent topics include breaking a chocolate bar into component squares (how many

 breaks does it take? try on the screen and see) and properties of addition and multiplication
 tables (pick a base to view them in). Author Bogomolny also maintains a Web site with
 far more material of the same sort, plus other resources, which should be interesting to

 puzzle-lovers everywhere.

 West, Beverly, Steven Strogatz, Jean Marie McDill, John Cantwell, and Hubert Hohn,

 Interactive Differential Equations, Addison Wesley Longman, 1997; xvi + 357 pp + CD-

 ROM (Macintosh/Windows) + User's Guides for Macintosh and Windows. ISBN 0-201-
 57132-3.

 Here is a fun and useful collection of "tools" to supplement a course in differential equations

 with productive labs. Its 90 groups of activities, in 31 units, are keyed to appropriate chap-

 ters of major textbooks. The activities are grouped into first-order differential equations,
 second-order equations, linear algebra, systems of differential equations, chaos and bifurca-
 tion, and series solutions and boundary value problems. Students' favorite labs are likely
 to be Golf (why does the theory mispredict the optimal angle for the longest drive?) and
 Romeo and Juliet (in which students can explore the consequences of various emotional
 responses of the two), while I particularly enjoyed exploring graphically the differences
 between exact solution curves and ones computed numerically.
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58th Annual William Lowell Putnam Mathematical 
Competition 

A-i A rectangle, HOMF, has sides HO = 11 and OM = 5. A triangle ABC has H as 
the intersection of the altitudes, 0 the center of the circumscribed circle, M the midpoint 
of BC, and F the foot of the altitude from A. What is the length of BC? 

H 0 

5 

F ll M 

Solution. The length of BC is 28. 
PlacecoordinatesontherectanglesothatF = (0,0), M = (11,0), 0 = (11, 5), H = 

(0, 5), and because B and C are on the x-axis, suppose that B = (-b, 0). Then, because M 
is the midpoint of BC, C = (22 + b, 0). The equation of line AC is 5y = -b(x - (22 + b)), 
and it follows that A = (0, (b2 + 22b)/5), and D, the midpoint of AC has coordinates 
((22 + b)/2, (b2 + 22b)/10). In addition OD has slope 5/b, so 

(b2+ 22b)/10 - 5 _ 5 
(22+b)/2-11 b 

This equation has three solutions: b = 0, which corresponds to an infinite triangle, b = -25 
and b = 3, which give the same triangle (except for labeling) and give the answer. 

A-2 Players 1, 2, 3,... , n are seated around a table and each has a single penny. Player 1 
passes a penny to Player 2, who then passes two pennies to Player 3. Player 3 then passes 
one penny to Player 4, who passes two pennies to Player 5, and so on, players alternately 
passing one penny or two to the next player who still has some pennies. A player who runs 
out of pennies drops out of the game and leaves the table. Find an infinite set of numbers n 
for which some player ends up with all n pennies. 

Solution. If n = 28 + 2, (s = 1, 2,3, ... ), Player 3 ends with 28 + 2 coins. 
LEMMA 1. Suppose there are 2N + 2 players at the beginning of the game. After one 
round (that is, after each player has passed once), exactly N players remain in the game. 
Player 3 will have just received 2 coins from Player 2N + 2 and will have 4 coins. All other 
remaining players will have 2 coins. 

154 
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Proof. Players 1 and 2 will drop out after their first pass. Odd-numbered players greater 
than 3 receive 2 pennies and give 1 away, for a net gain of 1, leaving those players with 
2 coins. Even-numbered players greater than 2 receive 1 penny but give away 2, so must 
drop out of the game. Player 3 receives 2 pennies from Player 2N + 2, so ends this round 
with 4 pennies, and will continue in the next round by passing 1 coin. 

LEMMA 2. Suppose there are 2N players at the beginning of the game, and suppose that 
Player 1 has a + 2 pennies, that the even-numbered players have b pennies, b < a, and 
that the odd-numbered players larger than 1 have a pennies. Then after one round, the 
odd-numbered players will each have one more penny, and the even-numbered players will 
have one fewer penny. Also, Player 1 will have just received 2 pennies from Player 2N. 
Consequently, after b rounds, only N players will remain in the game; Player 1 will have 
a + b + 2 coins, and all other remaining players will have a + b coins. 

Proof Odd-numbered players receive 2 coins and give away 1, for a net gain of 1; even- 
numbered players receive 1 penny but give away 2, for a net loss of 1. 

So now, suppose we begin with 28 + 2 players. After one round 2S-1 players remain in 
the game; one of them, Player 3, has 4 pennies and all other remaining players have 2 (from 
Lemma 1). After 2 more rounds, Player 3 has 6 coins, and the remaining 28-2 players have 
4 coins apiece (from Lemma 2). At the next stage (4 more rounds), Player 3 has 10 coins 
and the remaining 28-3 players have 8. At each stage the number of players is cut in half, 
and in the end, Player 3 will have all the pennies. 

A-3 Evaluate 
00 X3 X5 X7 x2 X4 X6 

x - _ 1 _ ~ 1 . . 
.2 

1 1 
2 

1 1 1 dx . 

o2 '2 4 2 4 6 ' 42 22 ' 42 
2 

2 62 dx. 

Solution 1. The first multiplicand is xe-X2/2 > 0 for x > 0, so by the monotone conver- 
gence theorem, the integral in question is equal to 

fc 
2 

n x 2k = 0 oo~x2k+1 e-x2/2 
lim ,,xe / 2 dx = E 2k2 
n--+ook=O22 kk! 2 k-OJo kk! dx 

Integrating by parts gives 

j x e-2/2 dx = 2k j x2k1ex2/2 dx. 

By induction on k, 

P00 00 

j x2k+1 e-2/2 dx = 2kk! j xe-x2/2 dx = 2kk! . 

O~~~~0 I 
??1 

Therefore the value of the integral is E 2kk! = Ve 
k=O 
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Solution 2. Let u = x2/2 and du = x dx. Under this substitution, our integral becomes 

,/ (-u+2!- 3! + ) (1 + (/2 + (()+ )du 2! ~ ~ ~ +(2!)2 + d 

= -du 
2 

% jO nni2 l; 1E 2n(n!)2 n= 2n(n!)2 n=0 2(n!)2 

where the interchange of the integral and summation is justified because the power series 
in the integrand is uniformly convergent on the interval [0, oo], and where we have used the 

the formula r(n + 1) = f ufe-U du = n!. So our integral is 

,0 (1/2)n= 
E( n! 

A-4 Let G be a group with identity e and : G -+ G a function such that 

0b(9l)0(92)0(93) = q(hl)q(h2)q(h3) 

whenever 919293 = e = hlh2h3. Prove that there exists an element a in G such that 
O(x) = aq(x) is a homomorphism (that is, O(xy) = 9)(x)+(y) for all x and y in G). 

Solution. Because a group homomorphism takes the identity to the identity, e = 4(e) = 

a+(e), so if Vb is a homomorphism, a must be (0(e)) . So define +(x) = ak(x), where 

a-1 = q(e). 
From exx-1 = e = xex-1 = eee, our condition implies that 

a-l?g(x)?(x-l) = O(x)a-l(x-l) = a-3. 

The first equality (after cancellation) shows that a-1 (and a) commutes with 0(x) for all x. 

This fact, together with the second equality, shows that 0(x-1) = (O(x)) a-2. Using 

this and eee = e = xy(y-'x-1), we see that 

a-3 = /(x)q(y)b((xy)') = q5(x)q5(y) (q5(xy)) 'a-2 

so q(xy) = a q(x)q(y). Thus, 

O(xy) = ab(xy) = aq20(x)5(y) = (a+(x)) (ao(y)) =+(x)+(y) 

A-5 Let Nn denote the number of ordered n-tuples of positive integers (a,, a2, ... , an) 
such that I/a, + 1/a2 + * * *+ I/an = 1. Determine whether N1o is even or odd. 

Solution. The number of different ordered 10-tuples for each multiset {a,, a2, .. , alo} 

is M = - ! where the mi are the multiplicities. For any given multiplicities, an 
ml ! .. *Mk ! 

unordered multiset A contributes to N1o (mod 2) if and only if M is odd. As 10 has two 
nonzero binary digits, this can happen in exactly two ways: ml = 10, or {ml, m2} = 

{2, 8}. The first case corresponds to the single solution (10, 10, ... , 10), the second to 
solutions {a, a, b, . . . , b}, where 2/a + 8/b = 1, and a 0 b. This last equation can be 
rewritten ab = 2b + 8a or (a - 2)(b - 8) = 16. The solutions (a, b) are (3, 24), (4, 16), 
(6, 12), (18, 9). Therefore Nio is odd. 
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A-6 For a positive integer n and any real number c, define Xk recursively by xo = 0, 
xi = 1, and for k > 0, 

CXk+1 - (n - k)Xk 
Xk+2 = k+1 

Fix n and then take c to be the largest value for which x,+, = 0. Find xk in terms of n 
and k, 1 < k < n. 

Solution. For n = 1, X2 = c. Thus, the only value that works for n = 1 is c = 0, in 
which case xo = 0, xl = 1, and x2 = 0. In general, Xk is a polynomial in c of degree at 
most k -1. Thus, Xn+1 = Ohas at most n solutions for c. We claim these solutions are 
{-(n - 1), -(n -3), n - .,n5, n - 3, n - I}, and that for c = n-1I the sequence is 

Xk = 
I 

for 1 < k < n. 

We prove this claim by induction on n. We have already verified the claim for n = 1. 
Assume now that the claim is proved for n > 1. Choose c from among the members of 
{-(n - 1),... , n - 3, n - 1} and let Yk be the corresponding sequence. Define xk = 
Yk + Yk-1 for k > 1, and set xo = 0. We are given (k + I)Yk+2 + (n - k)Yk = CYk+l for 
k > 0. Then 

(k + l)Xk+2 + (n + 1 - k)Xk = (k + 1) (Yk+2 + Yk+l) + (n + 1 - k) (Yk + Yk-1) 

= CYk+l + Yk + CYk + Yk+1 = (c + 1)(Yk+l + Yk) = (c + l)Xk+l. 

Thus, Xk satisfies the required recurrence for n + 1 and c+ 1. Also, Xn+2 = Yn+2 + Yn+1 = 
0, since Yn+1 = 0 implies Yn+2 = 0 by the recurrence. This proves that for n + 1 the 
solutions to Xn+2 = 0 include {-(n - 2),.. ., n - 2, n}. 
Also, the sequence 

n - I tn - I n 
Xk = Yk + Yk-1 k - 

( zk-2 =k I 

for c = n. To prove c = n is the largest solution for n + 1, we must produce the missing 
value. If Xk is the sequence for c = n, it is easy to see that Yk = (_1)k-lxk is the sequence 
for c = -n. Thus, c = -n is the (n + 1)-st distinct solution to Xn+2, which proves our 
claim entirely. 

B-1 Let {x} denote the distance between the real number x and the nearest integer. For 
each positive integer n, evaluate 

6n-1 
m m Sn =Emin({6} '3n} 

m=1 

(Here, min(a, b) denotes the minimum of a and b.) 

Solution. Using the properties {-x} = {x} = {1 + x}, we see that 

im(t 6n -m } 6n-m )i({m}{m}) 
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3n-1 

Thus, by symmetry, Sn = 2 E m ({6}, {3j}) .Notethat 
m=1 

m 
m } 13if 1 < m < 3n/2, 

3n t 1-3, if 3n/2 < m < 3n-1. 

m m 
Also, 1-- - if and only if m < 2n. Thus, 3n 6n 

1S _ E m+ (1 (2n) (2n) + 1)+vE k 2n+1 + (n-1)n - 

2 Sm 6n = 3n 12n Lk= 3n 6 6n 
m=l m=n1k= 

This proves Sn = n. 

B-2 Let f be a twice-differentiable real-valued function satisfying 

f(x) + f"(X) = -xg(x)f'(x), 

where g(x) > 0 for all real x. Prove that If (x) I is bounded. 

Solution. For x > 0, 

f'(x)(f(x) + f"(x)) = -x(f'(X)) g(x) < 0. 

Setting F(x) = (f(x)) + (f'(x)) , we conclude that F'(x) < 0, or by integration, 

F(x) = F(O) + j F'(t) dt < F(0). 
0 

Therefore F(x), and hence If (x) 1, is bounded above as x -* oo. 
Setting h(x) = f(-x), we have h(x) + h"(x) = -xg(-x)h'(x), so Ih(x)j = If(-x)I 

is bounded above as x - oo as well. 

B-3 For each positive integer n write the sum E in the form Pn where Pn and qn 
m=1 m 

are relatively prime positive integers. Determine all n such that 5 does not divide qn. 

Solution. Such n must lie in one of the ranges 1 to 4, 20 to 24, 100 to 104, or 120 to 124, 
inclusive. 
Let S be the set of n such that 5 does not divide qn. Define p(n) = Ln/5J and 

n 

tn = E ' 

m_ m=1m 
5%m 

the sum extending over only those m not divisible by 5. Then Sn = tn + Sp(n)/5. The 
denominator of tn is clearly prime to 5. Since Sn = tn for 1 < n < 4, these values 
1, 2, 3, 4 belong to S. For n > 5, Sn has denominator prime to 5 if and only if Sp(n) has 
denominator prime to 5 and numerator divisible by 5. 
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The next smallest member n of S must satisfy p(n) = 1, 2,3, or 4. Of 1,2,3,4, only 
S4= 25/12 has numerator divisible by 5. Thus the next smallest members of S are 20 to 
24 (all the n with p(n) = 4). 

4 
Note that E 5k+I has numerator divisible by 25, while E + has numerator 

relatively prime to 5 for j = 1,2,3. Thus, among 20 to 24, only 820 and 824 have numerator 
divisible by 5, since 85/5 = 5/12 and t2o and t24 have numerator divisible by 25. 
Thus, 100 to 104 and 120 to 124, inclusive, all belong to S. For these n, 

snt 
S 
p(n) -t_ +tp(n)+sp(p(n)) -t +I() Sn = tn + P)=tn + 5~ + 25 tn + + 12 5 5 25 5 12' 

since p(p(n)) = 4. Since p(n) = 20 or 24, tp(n) has numerator divisible by 25. Observing 
1 1 

that5+ 5k+5 has numerator divisible by 5 for 1 < 1 < 4, we are left to 
consider which of 

1 1 1 1 1 1 1 1 1 1 
101 1210201 1[2 12' 121 12+ 121 122 12 

has numerator divisible by 5. Working modulo 5, it is easy to see that none of these sums 
does. Hence, none of n = 100 to 104 or 120 to 124 yields a sum Sn with numerator 
divisible by 5. The tree stops here. 

B-4 Let am,n denote the coefficient of Xn in the expansion of (1 + x + x2)m. Prove that 
for all k > 0, 

L2k/3J 

0 < E (-1)zak-i,i < 1. 
i=o 

Solution. The Xn coefficient of (1 - x + x2)m is (-l)nam,n. Therefore, the sum in 
question is the xk coefficient of 

x 0(1 X + X2)0 + X(1 X + X2) + X2(1-X + X2)2 +... + xk(l x+x2)k + 

1 1 K1 +1 + _ 

1 - x(j - x + x2) 2 2- 1W + x4n J 0 + 
n=O 

2... n 2' nl 

B-5 Provethatforn > 2, 2 _ 2} (mod n). 

Solution. Every integer n > 0 can be written uniquely as n = 2tm, where m is odd. 
LEMMA. If 0 denotes the Euler 0-function and a and b are integers such that a > b > t 
and a _ b (mod 0(m)), then 2a _ 2b (mod n). 
Proof. As t < a, b, 2a - 2b is divisible by 2'. By Euler's theorem, 2a = 2b (mod m). 
Since 2' and m are relatively prime, n divides 2a - 2 
Now let a1 = 2, ak+1 = 2ak for k > 1. As 2ak > ak + 1, by induction on k, ak-l > k. 

For k > 2 and n = 2tm < k, we have ak-1 > ak-2 > k - 1 > 2t - 1 > t. Therefore, 

ak-2 ak-l (mod 0(m)) == ak1 =ak (mod n). 
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As 0(m) < m - 1 < n - 1, the statement 

ak-l E ak (mod n) for all n < k, 

follows by induction on k. 

B-6 The dissection of the 3-4-5 triangl shown below has diameter 5/2. 

4 5 

3 

Find the least diameter of a dissection of this triangle into four parts. (The diameter of a 
dissection is the least upper bound of the distances between pairs of points belonging to the 
same part.) 

Solution. d = 25/13. 
A 

D 

F 

B G C 

Take points D, E on AB, AC so that AD = DE = EC (i.e., = 25/13). By the pigeon- 
hole principle, two of A, B, C, D, E must lie in the same set. So some set must have 
a diameter at least 25/13, the minimum distance between any two of A, B, C, D, E. On 
the other hand, one can find points F, G, H, I, (for example, with BF = 20/13, CG = 
25/13 = AH and I the midpoint of CD) so that the diameters of ADH, BFIG, CEIG, 
DFIEH are each < 25/13. FG = V'59/13, BI = CI = DI = v56Y/13, EG = 
V?50/013, FE = 24/13, IH = 162.5/13, FH = V36-/13. 
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